Вам понадобится

  • - спектроскоп;
  • - газовая горелка;
  • - маленькая керамическая или фарфоровая ложка;
  • - чистая поваренная соль;
  • - прозрачная пробирка, наполненная углекислым газом;
  • - мощная лампа накаливания;
  • - мощная «экономичная» газосветная лампа.

Инструкция

Для дифракционного спектроскопа возьмите компакт-диск, маленькую картонную коробочку, картонный футляр от градусника. Вырежьте кусок диска по размеру коробочки. На верхней плоскости коробки, рядом с ее короткой стенкой, расположите окуляр под углом примерно 135° к поверхности. Окуляр представляет собой кусок футляра от градусника. Место для щели выберите экспериментально, поочередно протыкая и заклеивая дырочки на другой короткой стенке.

Напротив щели спектроскопа установите мощную лампу накаливания. В окуляре спектроскопа вы увидите непрерывный спектр. Такой спектральный существует у любого нагретого предмета. В нем нет линий выделения и поглощения. В этот спектр известен как .

Наберите в маленькую керамическую или фарфоровую ложку соли. Направьте щель спектроскопа на темный несветящийся участок, находящийся выше светлого пламени горелки. Введите в пламя ложку с . В момент, когда пламя окрасится в интенсивно желтый цвет, в спектроскопе можно будет наблюдать спектр излучения исследуемой соли (хлористого натрия), где особенно ярко будет видна линия излучения в желтой области. Такой же эксперимент можно провести с хлористым калием, солями меди, вольфрама и так далее. Так выглядят спектры излучения - светлые линии на определенных участках темного фона.

Направьте рабочую щель спектроскопа на яркую лампу накаливания. Поместит прозрачную пробирку, наполненную углекислым газом так, чтобы она перекрыла рабочую щель спектроскопа. В окуляр можно наблюдать непрерывный спектр, пересеченный темными вертикальными линиями. Это так называемый спектр поглощения, в данном случае - углекислого газа.

Направьте рабочую щель спектроскопа на включенную «экономичную» лампу. Вместо привычного непрерывного спектра вы увидите набор вертикальных линий, расположенных в различных частях и имеющие по большей части различные цвета. Отсюда можно заключить, что спектр излучения такой лампы сильно отличается от спектра обычной лампы накаливания, что на глаз неощутимо, но влияет на процесс фотографирования.

Видео по теме

Обратите внимание

Существует 2 типа спектроскопов. В первом используется прозрачная дисперсионная трехгранная призма. Свет от исследуемого объекта подается на нее через узкую щель и наблюдается со стороны другой грани при помощи окулярной трубки. Во избежание световых помех, вся конструкция накрывается светонепроницаемым кожухом. Она может также состоять из изолированных от света элементов и трубок. Применение линз в таком спектроскопе необязательно. Второй тип спектроскопа - дифракционный. Основным его элементом является дифракционная решетка. Свет от объекта тоже желательно подавать через щель. В качестве дифракционных решеток в самодельных конструкциях сейчас часто используют куски от CD и DVD дисков. Для предложенных экспериментов подойдет любой тип спектроскопа;

Поваренная соль не должна содержать йода;

Эксперименты лучше проводить с помощником;

Все эксперименты лучше проводить в затемненном помещении и обязательно на черном фоне.

Полезный совет

Для того чтобы получить углекислый газ в пробирке, поместите туда кусочек обычного школьного мела. Залейте его соляной кислотой. Полученный газ соберите в чистую пробирку. Углекислый газ тяжелее воздуха, поэтому он будет собираться внизу пустой пробирки, вытесняя из нее воздух. Для этого в пустую пробирку опустите трубку от источника газа, то есть от пробирки, в которой была реакция.

Физический термин «спектр» происходит от латинского слова spectrum, что значит «видение», или даже «призрак». Но предмет, названный таким мрачным словом, имеет прямое отношение к такому прекрасному явлению природы, как радуга.

В широком смысле спектром называется распределение значений той или иной физической величины. Частный случай – распределение значений частот электромагнитного излучения. Свет, который воспринимается человеческим глазом – это тоже разновидность электромагнитного излучения, и у него есть спектр.

Открытие спектра

Честь открытия спектра света принадлежит И.Ньютону. Приступая к этому исследованию, ученый преследовал практическую цель: повысить качество линз для телескопов. Проблема заключалась в том, что края изображения, которое можно было наблюдать в , окрашивались во все цвета радуги.


И.Ньютон поставил опыт: в затемненную комнату через маленькое отверстие проникал луч света, который падал на экран. Но на пути его была установлена трехгранная стеклянная призма. На экране вместо белого светового пятна обозначилась радужная полоса. Белый солнечный свет оказался сложным, составным.


Ученый усложнил опыт. Он стал проделывать в экране маленькие отверстия, чтобы через них проходил только один цветной луч (например, красный), а позади экрана вторую и еще один экран. Оказалось, что цветные лучи, на которые разложила свет первая призма, не разлагаются на составные части, проходя через вторую призму, они только отклоняются. Следовательно, эти световые лучи являются простыми, а преломлялись они в по-разному, что и позволило « » свет на части.


Так стало ясно, что различные цвета не происходят от разных степеней «смешения света с тьмой», как считалось до И.Ньютона, а являются составными частями самого света. Этот состав и был назван спектром света.


Открытие И.Ньютона имело важное значение для своего времени, оно многое дало исследованию природы света. Но истинный переворот в науке, связанный с исследованием спектра света, произошёл в середине XIX века.


Немецкие ученые Р.В.Бунзен и Г.Р.Кирхгоф изучали спектр света, излучаемого огнем, к которому примешиваются испарения различных солей. Спектр варьировался в зависимости от примесей. Это привело исследователей к мысли, что по световым спектрам можно судить о химическом составе Солнца и других звезд. Так родился метод спектрального анализа.

Словом «спектр» великий английский ученый Исаак Ньютон обозначал многоцветную полосу, которая получается при прохождении солнечного луча через треугольную призму. Полоса эта очень похожа на радугу, и именно ее-то чаще всего называют спектром и в обычной жизни. Между тем, каждое вещество имеет свой собственный спектр излучения или поглощения, и их можно наблюдать, если провести несколько экспериментов. Свойства веществ давать разные спектры широко применяется в разных сферах деятельности. Например, спектральный анализ является одним из самых точных криминалистических методов. Очень часто этот метод используется и в медицине.

Вам понадобится

  • - спектроскоп;
  • - газовая горелка;
  • - маленькая керамическая или фарфоровая ложка;
  • - чистая поваренная соль;
  • - прозрачная пробирка, наполненная углекислым газом;
  • - мощная лампа накаливания;
  • - мощная «экономичная» газосветная лампа.

Инструкция

  • Для дифракционного спектроскопа возьмите компакт-диск, маленькую картонную коробочку, картонный футляр от градусника. Вырежьте кусок диска по размеру коробочки. На верхней плоскости коробки, рядом с ее короткой стенкой, расположите окуляр под углом примерно 135° к поверхности. Окуляр представляет собой кусок футляра от градусника. Место для щели выберите экспериментально, поочередно протыкая и заклеивая дырочки на другой короткой стенке.
  • Напротив щели спектроскопа установите мощную лампу накаливания. В окуляре спектроскопа вы увидите непрерывный спектр. Такой спектральный состав излучения существует у любого нагретого предмета. В нем нет линий выделения и поглощения. В природе этот спектр известен как радуга.
  • Наберите в маленькую керамическую или фарфоровую ложку соли. Направьте щель спектроскопа на темный несветящийся участок, находящийся выше светлого пламени горелки. Введите в пламя ложку с солью. В момент, когда пламя окрасится в интенсивно желтый цвет, в спектроскопе можно будет наблюдать спектр излучения исследуемой соли (хлористого натрия), где особенно ярко будет видна линия излучения в желтой области. Такой же эксперимент можно провести с хлористым калием, солями меди, вольфрама и так далее. Так выглядят спектры излучения - светлые линии на определенных участках темного фона.
  • Направьте рабочую щель спектроскопа на яркую лампу накаливания. Поместит прозрачную пробирку, наполненную углекислым газом так, чтобы она перекрыла рабочую щель спектроскопа. В окуляр можно наблюдать непрерывный спектр, пересеченный темными вертикальными линиями. Это так называемый спектр поглощения, в данном случае - углекислого газа.
  • Направьте рабочую щель спектроскопа на включенную «экономичную» лампу. Вместо привычного непрерывного спектра вы увидите набор вертикальных линий, расположенных в различных частях и имеющие по большей части различные цвета. Отсюда можно заключить, что спектр излучения такой лампы сильно отличается от спектра обычной лампы накаливания, что на глаз неощутимо, но влияет на процесс фотографирования.
  • Tutorial

Друзья приближается вечер пятницы, это прекрасное интимное время, когда под покровом манящего сумрака можно достать свой спектрометр и всю ночь, до первых лучей восходящего солнца мерить спектр лампы накаливания, а когда взойдет солнце померить и его спектр.
Как у вас все еще нет своего спектрометра? Не беда пройдемте под кат и исправим это недоразумение.
Внимание! Данная статья не претендует на статус полноценного туториала, но возможно уже через 20 минут после её прочтения вы разложите свой первый спектр излучения.

Человек и спектроскоп
Я буду повествовать вам в том порядке, в котором проходил все этапы сам, можно сказать от худшего к лучшему. Если кто-то нацелен сразу на более ли менее серьезный результат, то половину статьи можно смело пропустить. Ну а людям с кривыми руками (как у меня) и просто любопытным будет интересно почитать про мои мытарства с самого начала.
В интернете гуляет достаточное количество материалов о том, как собрать спектрометр/спектроскоп своими руками из подручных материалов.
Для того чтобы обзавестись спектроскопом в домашних условиях, в самом простом случае понадобится совсем не много - CD/DVD болванка и коробка.
На мои первые опыты в изучении спектра меня натолкнул этот материал - Спектроскопия

Собственно благодаря наработкам автора, я собрал свой первый спектроскоп из пропускающей дифракционной решетки DVD диска и картонной коробки из под чая, а еще ранее до этого мне хватило плотного куска картона с прорезью и пропускающей решетки от DVD болванки.
Не могу сказать, что результаты были ошеломляющие, но первые спектры получить вполне удалось, чудом сохраненные фотографии процесса под спойлером

Фото спектроскопов и спектра

Самый первый вариант с куском картона

Второй вариант с коробкой из под чая

И отснятый спектр

Единственное для моего удобства, он модифицировал данную конструкцию USB видеокамерой, получилось вот так:

фото спектрометра



Сразу скажу, эта модификация избавила меня от необходимости пользоваться камерой мобильного телефона, но был один недостаток камеру не удалось откалибровать под настройки сервиса Spectral Worckbench (о котором пойдет ниже речь). Поэтому захват спектра в режиме реального времени мне осуществить не удалось, но распознавать уже собранные фотографии вполне.

Итак допустим вы купили или собрали спектроскоп по указанной выше инструкции.
После этого создайте учетную запись в проекте PublicLab.org и переходите на страницу сервиса SpectralWorkbench.org Дальше я опишу вам ту методику распознавания спектра, которой пользовался сам.
Для начала нам надо будет откалибровать наш спектрометр, Для этого вам будет необходимо получить снимок спектра люминесцентной лампы, желательно - большой потолочной, но подойдет и энергосберегающая лампа.
1) Нажимаем кнопку Capture spectra
2) Upload Image
3) Заполняем поля, выбираем файл, выбираем new calibration, выбираем девайс (можно выбрать мини спектроскоп или просто custom), выбираем какой у вас спектр вертикальный или горизонтальный, чтобы было понятно спектры на скриншоте предыдущей программы - горизонтальные
4) Откроется окно с графиками.
5) Проверяем, как повернут ваш спектр. Слева должен быть синий диапазон, справа - красный. Если это не так выбираем кнопку more tools – flip horizontally, после чего видим, что изображение повернулось а график нет, так что нажимаем more tools – re-extract from foto, все пики снова соответствуют реальным пикам.

6) Нажимаем кнопку Calibrate, нажимаем begin, выбираем синий пик прямо на графике (см. скриншот), нажимаем ЛКМ и открывается всплывающее окно еще раз, теперь нам надо нажать finish и выбрать крайний зеленый пик, после чего страница обновиться и мы получим откалиброванное по длинам волн изображение.
Теперь можно заливать и другие исследуемые спектры, при запросе калибровки нужно указывать уже откалиброванный нами ранее график.

Скриншот

Вид настроенной программы


Внимание! Калибровка предполагает, что вы в дальнейшем будете делать снимки на тот же самый аппарат, который калибровали изменение аппарата разрешения снимков, сильное смещение спектра на фото относительно положения на откалиброванном примере, может исказить результаты измерения.
Честно признаюсь я свои снимки слегка правил в редакторе. Если где была засветка, затемнял окружение, иногда немного поворачивал спектр, чтобы получить прямоугольное изображение, но еще раз повторюсь размер файла и расположение относительно центра снимка самого спектра лучше не менять.
С остальными функциями вроде макросов, авто или ручной подстройки яркости я предлагаю вам разобраться самостоятельно, на мой взгляд они не так критичны.
Полученные графики потом удобно переносить в CSV, при этом первое число будет дробной (вероятно дробной) длинной волны, а через запятую будет усредненное относительное значение интенсивности излучения. Полученные значения красиво смотреться в виде графиков, построенных например в Scilab

У SpectralWorkbench.org есть приложения для смартфонов. Я ими не пользовался. поэтому оценить не могу.

Красочного вам дня во всех цветах радуги друзья.

Вопросы.

1. Как выглядит сплошной спектр?

Сплошной спектр представляет собой полосу, состоящую из всех цветов радуги, плавно переходящих друг в друга.

2. От света каких тел получается сплошной спектр? Приведите примеры.

Сплошной спектр получается от света твердых и жидких тел (нить электрической лампы, расплавленный металл, пламя свечи) с температурой несколько тысяч градусов Цельсия. Его также дают светящиеся газы и пары при высоком давлении.

3. Как выглядят линейчатые спектры?

Линейчатые спектры состоят из отдельных линий определенных цветов.

4. Каким образом можно получить линейчатый спектр испускания натрия?

Для этого можно внести в пламя горелки кусочек поваренной соли (NaCl) и наблюдать спектр через спектроскоп.

5. От каких источников света получаются линейчатые спектры?

Линейчатые спектры характерны для светящихся газов малой плотности.

6. Каков механизм получения линейчатых спектров поглощения (т.е. что нужно сделать, чтобы получить их)?

Линейчатые спектры поглощения получают при пропускании сквозь газы малой плотности свет от более яркого и более горячего источника.

7. Как получить линейчатый спектр поглощения натрия и как он выглядит?

Для этого надо пропустить свет от лампы накаливания через сосуд с парами натрия. В результате этого в сплошном спектре света от лампы накаливания появятся узкие черные линии, в том месте где находятся желтые линии в спектре испускания натрия.

8. В чем заключается суть закона Кирхгофа, касающегося линейчатых спектров излучения и поглощения?

Закон Киргофа гласит, что атомы данного элемента поглощают и излучают световые волны на одних и тех же частотах.