К наружному уху относятся ушная раковина, слуховой проход и барабанная перепонка, которая закрывает внутренний конец слухового прохода. Слуховой проход имеет неправильную изогнутую форму. У взрослого человека длина его составляет около 2,5 см, а диаметр около 8 мм. Поверхность слухового прохода покрыта волосками и содержит железы, выделяющие ушную серу, которая необходима для поддержания влажности кожи. Слуховой проход обеспечивает также постоянную температуру и влажность барабанной перепонки.

  • Среднее ухо

Среднее ухо – это заполненная воздухом полость за барабанной перепонкой. Эта полость соединяется с носоглоткой посредством евстахиевой трубы – узкого хрящевого канала, который обычно находится в закрытом состоянии. Глотательные движения открывают евстахиеву трубу, что обеспечивает поступление воздуха в полость и выравнивание давления по обе стороны барабанной перепонки для ее оптимальной подвижности. В полости среднего уха находятся три миниатюрные слуховые косточки: молоточек, наковальня и стремя. Одним концом молоточек соединен с барабанной перепонкой, другой его конец связан с наковальней, которая, в свою очередь соединена со стременем, а стремя с улиткой внутреннего уха. Барабанная перепонка постоянно колеблется под действием улавливаемых ухом звуков, а слуховые косточки передают ее колебания во внутреннее ухо.

  • Внутреннее ухо

Во внутреннем ухе содержится несколько структур, но к слуху отношение имеет только улитка, получившая свое название из-за спиральной формы. Улитка разделена на три канала, заполненные лимфатическими жидкостями. Жидкость в среднем канале отличается по составу от жидкости в двух других каналах. Орган, непосредственно ответственный за слух (Кортиев орган), находится в среднем канале. Кортиев орган содержит около 30000 волосковых клеток, которые улавливают колебания жидкости в канале, вызванные движением стремени, и генерируют электрические импульсы, которые по слуховому нерву передаются к слуховой зоне коры головного мозга. Каждая волосковая клетка реагирует на определенную звуковую частоту, причем высокие частоты улавливаются клетками нижней части улитки, а клетки, настроенные на низкие частоты, располагаются в верхней части улитки. Если волосковые клетки по каким-либо причинам гибнут, человек перестает воспринимать звуки соответствующих частот.

  • Слуховые проводящие пути

Слуховые проводящие пути – это совокупность нервных волокон, проводящих нервные импульсы от улитки к слуховым центрам коры головного мозга, в результате чего возникает слуховое ощущение. Слуховые центры расположены в височных долях головного мозга. Время, потраченное на прохождение слухового сигнала от внешнего уха к слуховым центрам мозга, составляет около 10 миллисекунд.

Как устроено ухо человека (рисунок предоставлен фирмой Siemens)

Восприятие звука

Ухо последовательно преобразует звуки в механические колебания барабанной перепонки и слуховых косточек, затем в колебания жидкости в улитке и, наконец, в электрические импульсы, которые по проводящим путям центральной слуховой системы передаются в височные доли мозга для распознавания и обработки.
Мозг и промежуточные узлы слуховых проводящих путей извлекают не только информацию о высоте и громкости звука, но и другие характеристики звука, например, интервал времени между моментами улавливания звука правым и левым ухом – на этом основана способность человека определять направление, по которому приходит звук. При этом мозг оценивает как информацию, полученную от каждого уха в отдельности, так и объединяет всю полученную информацию в единое ощущение.

В нашем мозгу хранятся «шаблоны» окружающих нас звуков – знакомых голосов, музыки, опасных звуков и т.д. Это помогает мозгу в процессе обработки информации о звуке быстрее отличить знакомые звуки от незнакомых. При снижении слуха мозг начинает получать искаженную информацию (звуки становятся более тихими), что приводит к ошибкам в интерпретации звуков. С другой стороны, нарушения в работе мозга в результате старения, травмы головы или неврологических болезней и расстройств могут сопровождаться симптомами, похожими на симптомы снижения слуха, например, невнимательность, отрешенность от окружения, неадекватная реакция. Для того чтобы правильно слышать и понимать звуки, необходима согласованная работа слухового анализатора и мозга. Таким образом, без преувеличения можно сказать, что человек слышит не ушами, а мозгом!

В проведении звуковых колебаний принимают участие ушная раковина, наружный слуховой проход, барабанная перепонка, слуховые косточки, кольцевая связка овального окна, мембрана круглого окна (вторичная барабанная перепонка), жидкость лабиринта (перилимфа), основная мембрана.

У человека роль ушной раковины сравнительно невелика. У животных, обладающих способностью двигать ушами, ушные раковины помогают определять направление источника звука. У человека ушная раковина, как рупор, лишь собирает звуковые волны. Однако и в этом отношении ее роль незначительна. Поэтому, когда человек прислушивается к тихим звукам, он приставляет к уху ладонь, благодаря чему поверхность ушной раковины значительно увеличивается.

Звуковые волны, проникнув в слуховой проход, приводят в содружественное колебание барабанную перепонку, которая передает звуковые колебания через цепь слуховых косточек в овальное окно и далее перилимфе внутреннего уха.

Барабанная перепонка отвечает не только на те звуки, число колебаний которых совпадает с ее собственным тоном (800--1000 Гц), но и на любой звук. Такой резонанс носит название универсального в отличие от острого резонанса, когда вторично звучащее тело (например, струна рояля) отвечает только на один определенный тон.

Барабанная перепонка и слуховые косточки не просто передают звуковые колебания, поступающие в наружный слуховой проход, а трансформируют их, т. е. превращают воздушные колебания с большой амплитудой и малым давлением в колебания жидкости лабиринта с малой амплитудой и большим давлением.

Эта трансформация достигается благодаря следующим условиям: 1) поверхность барабанной перепонки в 15--20 раз больше площади овального окна; 2) молоточек и наковальня образуют неравноплечий рычаг, так что экскурсии, совершаемые подножной пластинкой стремени, примерно в полтора раза меньше экскурсий рукоятки молоточка.

Общий эффект трансформирующего действия барабанной перепонки и рычажной системы слуховых косточек выражается в увеличении силы звука на 25--30 дБ.

Нарушение этого механизма при повреждениях барабанной перепонки и заболеваниях среднего уха ведет к соответствующему снижению слуха, т. е. на 25--30 дБ.

Для нормального функционирования барабанной перепонки и цепи слуховых косточек необходимо, чтобы давление воздуха по обе стороны от барабанной перепонки, т. е. в наружном слуховом проходе и в барабанной полости, было одинаковым.

Это выравнивание давления происходит благодаря вентиляционной функции слуховой трубы, которая соединяет барабанную полость с носоглоткой. При каждом глотательном движении воздух из носоглотки поступает в барабанную полость, и, таким образом, давление воздуха в барабанной полости все время поддерживается на уровне атмосферного, т. е. на том же уровне, что и в наружном слуховом проходе.

К звукопроводящему аппарату относятся также мышцы среднего уха, которые выполняют следующие функции: 1) поддержание нормального тонуса барабанной перепонки и цепи слуховых косточек; 2) защиту внутреннего уха от чрезмерных звуковых раздражений; 3) аккомодацию, т. е. приспособление звукопроводящего аппарата к звукам различной силы и высоты.

При сокращении мышцы, натягивающей барабанную перепонку, слуховая чувствительность повышается, что дает основания считать эту мышцу "настораживающей". Стременная мышца играет противоположную роль - она при своем сокращении ограничивает движения стремени и тем самым как бы приглушает слишком сильные звуки.

Многих из нас иногда интересует простой физиологический вопрос, касающийся того, как мы слышим. Давайте рассмотрим, из чего же состоит наш орган слуха и как происходит его работа.

Прежде всего, отметим, что слуховой анализатор имеет четыре части:

  1. Наружное ухо. К нему относят слуховой привод, ушную раковину, а также барабанную перепонку. Последняя служит для изоляции внутреннего конца слухового провода от окружающей среды. Что касается слухового прохода, то он имеет совершенно изогнутую форму длиной около 2,5 сантиметров. На поверхности слухового прохода имеются железы, а также она покрыта волосками. Именно эти железы и выделяют ушную серу, которую мы вычищаем по утрам. Также слуховой проход необходим для поддержания необходимой влажности и температуры внутри уха.
  2. Среднее ухо. Та составляющая слухового анализатора, которая находится за барабанной перепонкой и заполнена воздухом, называется средним ухом. Оно соединяется при помощи евстахиевой трубы с носоглоткой. Евстахиева труба представляет собой достаточно узкий хрящевой канал, который в обычном состоянии закрыт. Когда мы совершаем глотательные движения, он открывается и через него в полость поступает воздух. Внутри среднего уха расположены три маленькие слуховые косточки: наковальня, молоточек и стремя. Молоточек при помощи одного конца соединяется со стременем, а оно уже с литкой во внутреннем ухе. Под действием звуков барабанная перепонка находится в постоянном движении, а слуховые косточки уже дальше передают её колебания внутрь. Она является одним из важнейших элементов, которое необходимо изучить при рассмотрении того, какое строение уха человека
  3. Внутреннее ухо. В этой части слухового ансамбля имеется сразу несколько структур, однако слух контролирует только одна из них – улитка. Такое название она получила из-за своей спиральной формы. Она имеет три канала, которые заполнены лимфатическими жидкостями. В среднем канале жидкость значительно отличается по составу от остальных. Тот орган, который отвечает за слух, называется Кортиев орган и расположен в среднем канале. Он состоит из несколько тысяч волосков, улавливающих колебания, которые создаёт жидкость, движущаяся по каналу. Здесь же генерируются электрические импульсы, передающиеся затем в кору головного мозга. Определенная волосковая клетка реагирует на особый вид звука. Если же происходит так, что волосковая клетка гибнет, то человек перестаёт воспринимать тот или иной звук. Также для того, чтобы понять, как человек слышит, следует рассмотреть еще и слуховые проводящие пути.

Слуховые пути

Ими являются совокупность волокон, которые проводят нервные импульсы от самой улитки и до слуховых центров вашей головы. Именно благодаря путям наш мозг воспринимает тот или иной звук. Находятся слуховые центры в височных долях мозга. Звук, который проходит через внешнее ухо к головному мозгу продолжается около десяти миллисекунд.

Как мы воспринимаем звук

Человеческое ухо перерабатывает получаемые из окружающей среды звуки в специальные механические колебания, которые потом преобразовывают движения жидкости в улитке в электрические импульсы. Они по путям центральной слуховой системы переходят в височные части мозга, чтобы затем быть распознанными и обработанными. Теперь уже промежуточные узлы и сам головной мозг извлекает некую информацию относительно громкости и высоты звучания, а также друге характеристики, такие как время улавливания звука, направление звука и другие. Таким образом, мозг может воспринимать полученную информацию от каждого уха по очереди или совместно, получая единое ощущение.

Известно, что внутри нашего уха хранятся некие «шаблоны» уже изученных звуков, которые наш мозг распознал. Именно они помогают мозгу правильно сортировать и определять первоисточник информации. Если звук снижается, то мозг соответственно начинает получать неправильную информацию, что может привести к неправильному толкованию звуков. Но не только звуки могут искажаться, со временем головной мозг тоже подвергается неправильной трактовке тех или иных звуков. Результатом может оказаться неправильная реакция человека или неверная трактовка информации. Чтобы правильно слышать и достоверно трактовать услышанное, нам понадобится синхронная работа, как мозга, так и слухового анализатора. Именно поэтому можно отметить, что человек слышит не только ушами, но и головным мозгом.

Таким образом, строение уха человека достаточно сложное. Только согласованная работа всех частей органа слуха и головного мозга позволит нам правильно понимать и трактовать услышанное.

Представляет собой сложный специализированный орган, состоящий из трех отделов: наружного, среднего и внутреннего уха.

Наружное ухо является звукоулавливающим аппаратом. Звуковые колебания улавливаются ушными раковинами и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами, так называемый биниуральный слух, имеют значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятичных долей секунды (0,0006 с) раньше, чем до другого. Этой предельно малой разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо представляет собой воздушную полость, которая через евстахиеву трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают 3 слуховые косточки, соединенные друг с другом, - молоточек, наковальня и стремечко, а последнее через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе - перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. В среднем ухе имеется особый механизм адаптации к изменениям интенсивности звука. При сильных звуках специальные мышцы увеличивают натяжение барабанной перепонки и уменьшают подвижность стремечка. Тем самым снижается амплитуда колебаний, и внутреннее ухо предохраняется от повреждений.

Внутреннее ухо с расположенной в нем улиткой находится в пирамидке височной кости. Улитка у человека образует 2,5 спиральных витка. Улитковый канал разделен двумя перегородками (основной мембраной и вестибулярной мембраной) на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость их заполнена жидкостью - перилимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава - эндолимфой. В среднем канале расположен звуковоспринимающий аппарат - кортиев орган, в котором находятся рецепторы звуковых колебаний - волосковые клетки.

Механизм восприятия звука. Физиологический механизм восприятия звука основан на двух процессах, происходящих в улитке: 1) разделение звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки и 2) преобразование рецепторными клетками механических колебаний в нервное возбуждение. Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к смещениям основной мембраны. От высоты звука зависит высота столба колеблющейся жидкости и, соответственно, место наибольшего смещения основной мембраны. Таким образом, при различных по высоте звуках возбуждаются разные волосковые клетки и разные нервные волокна. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.
Преобразование колебаний в процесс возбуждения осуществляется специальными рецепторами - волосковыми клетками. Волоски этих клеток погружены в покровную мембрану. Механические колебания при действии звука приводят к смещению покровной мембраны относительно рецепторных клеток и изгибанию волосков. В рецепторных клетках механическое смещение волосков вызывает процесс возбуждений.

Проводимость звука. Различают воздушную и костную проводимость. В обычных условиях у человека преобладает воздушная проводимость: звуковые волны улавливаются наружным ухом, и воздушные колебания передаются через наружный слуховой проход в среднее и внутреннее ухо. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке. Этот механизм передачи звуковых колебаний имеет значение при погружениях человека под воду.
Человек обычно воспринимает звуки с частотой от 15 до 20 000 Гц (в диапазоне 10-11 октав). У детей верхний предел достигает 22 000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1000 до 3000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.

Слуховая система человека – сложный и вместе с тем очень интересно устроенный механизм. Чтобы более ясно представить себе, что для нас есть звук, нужно разобраться с тем, что и как мы слышим.

В анатомии ухо человека принято делить на три составные части: наружное ухо, среднее ухо и внутреннее ухо. К наружному уху относится ушная раковина, помогающая сконцентрировать звуковые колебания, и наружный слуховой канал. Звуковая волна, попадая в ушную раковину, проходит дальше, по слуховому каналу (его длина составляет около 3 см, а диаметр - около 0.5) и попадает в среднее ухо, где ударяется о барабанную перепонку, представляющую собой тонкою полупрозрачную мембрану. Барабанная перепонка преобразует звуковую волну в вибрации (усиливая эффект от слабой звуковой волны и ослабляя от сильной). Эти вибрации передаются по присоединенным к барабанной перепонке косточкам - молоточку, наковальне и стремечку – во внутреннее ухо, представляющее собой завитую трубку с жидкостью диаметром около 0.2 мм и длинной около 4 см. Эта трубка называется улиткой. Внутри улитки находится еще одна мембрана, называемая базилярной, которая напоминает струну длиной 32 мм, вдоль которой располагаются чувствительные клетки (более 20 тысяч волокон). Толщина струны в начале улитки и у ее вершины различна. В результате такого строения мембрана резонирует разными своими частями в ответ на звуковые колебания разной высоты. Так, высокочастотный звук затрагивает нервные окончания, располагающиеся в начале улитки, а звуковые колебания низкой частоты – окончания в ее вершине. Механизм распознавания частоты звуковых колебаний достаточно сложен. В целом он заключается в анализе месторасположения затронутых колебаниями нервных окончаний, а также в анализе частоты импульсов, поступающих в мозг от нервных окончаний.

Существует целая наука, изучающая психологические и физиологические особенности восприятия звука человеком. Эта наука называется психоакустикой . В последние несколько десятков лет психоакустика стала одной из наиболее важных отраслей в области звуковых технологий, поскольку в основном именно благодаря знаниям в области психоакустики современные звуковые технологии получили свое развитие. Давайте рассмотрим самые основные факты, установленные психоакустикой.

Основную информацию о звуковых колебаниях мозг получает в области до 4 кГц. Этот факт оказывается вполне логичным, если учесть, что все основные жизненно необходимые человеку звуки находятся именно в этой спектральной полосе, до 4 кГц (голоса других людей и животных, шум воды, ветра и проч.). Частоты выше 4 кГц являются для человека лишь вспомогательными, что подтверждается многими опытами. В целом, принято считать, что низкие частоты «ответственны» за разборчивость, ясность аудио информации, а высокие частоты – за субъективное качество звука. Слуховой аппарат человека способен различать частотные составляющие звука в пределах от 20-30 Гц до приблизительно 20 КГц. Указанная верхняя граница может колебаться в зависимости от возраста слушателя и других факторов.

В спектре звука большинства музыкальных инструментов наблюдается наиболее выделяющаяся по амплитуде частотная составляющая. Ее называют основной частотой или основным тоном . Основная частота является очень важным параметром звучания, и вот почему. Для периодических сигналов, слуховая система человека способна различать высоту звука. В соответствии с определением международной организации стандартов, высота звука - это субъективная характеристика, распределяющая звуки по некоторой шкале от низких к высоким. На воспринимаемую высоту звука влияет, главным образом, частота основного тона (период колебаний), при этом общая форма звуковой волны и ее сложность (форма периода) также могут оказывать влияние на нее. Высота звука может определяться слуховой системой для сложных сигналов, но только в том случае, если основной тон сигнала является периодическим (например, в звуке хлопка или выстрела тон не является периодическим и по сему слух не способен оценить его высоту).

Вообще, в зависимости от амплитуд составляющих спектра, звук может приобретать различную окраску и восприниматься как тон или как шум . В случае если спектр дискретен (то есть, на графике спектра присутствуют явно выраженные пики), то звук воспринимается как тон, если имеет место один пик, или как созвучие , в случае присутствия нескольких явно выраженных пиков. Если же звук имеет сплошной спектр, то есть амплитуды частотных составляющих спектра примерно равны, то на слух такой звук воспринимается как шум. Для демонстрации наглядного примера можно попытаться экспериментально «изготовить» различные музыкальные тона и созвучия. Для этого необходимо к громкоговорителю через сумматор подключить несколько генераторов чистых тонов (осцилляторов) . Причем, сделать это таким образом, чтобы была возможность регулировки амплитуды и частоты каждого генерируемого чистого тона. В результате проделанной работы будет получена возможность смешивать сигналы от всех осцилляторов в желаемой пропорции, и тем самым создавать совершенно различные звуки. Поученный прибор явит собой простейший синтезатор звука.

Очень важной характеристикой слуховой системы человека является способность различать два тона с разными частотами. Опытные проверки показали, что в полосе от 0 до 16 кГц человеческий слух способен различать до 620 градаций частот (в зависимости от интенсивности звука), при этом примерно 140 градаций находятся в промежутке от 0 до 500 Гц.

На восприятии высоты звука для чистых тонов сказываются также интенсивность и длительность звучания. В частности, низкий чистый тон покажется еще более низким, если увеличить интенсивность его звучания. Обратная ситуация наблюдается с высокочастотным чистым тоном – увеличение интенсивности звучания сделает субъективно воспринимаемую высоту тона еще более высокой.

Длительность звучания сказывается на воспринимаемой высоте тона критическим образом. Так, очень кратковременное звучание (менее 15 мс) любой частоты покажется на слух просто резким щелчком – слух будет неспособен различить высоту тона для такого сигнала. Высота тона начинает восприниматься лишь спустя 15 мс для частот в полосе 1000 – 2000 Гц и лишь спустя 60 мс – для частот ниже 500 Гц. Это явление называется инерционностью слуха . Инерционность слуха связана с устройством базилярной мембраны. Кратковременные звуковые всплески не способны заставить мембрану резонировать на нужной частоте, а значит мозг не получает информацию о высоте тона очень коротких звуков. Минимальное время, требуемое для распознавания высоты тона, зависит от частоты звукового сигнала, а, точнее, от длины волны. Чем выше частота звука, тем меньше длина звуковой волны, а значит тем быстрее «устанавливаются» колебания базилярной мембраны.

В природе мы почти не сталкиваемся с чистыми тонами. Звучание любого музыкального инструмента является сложным и состоит из множества частотных составляющих. Как мы сказали выше, даже для таких звуков слух способен установить высоту их звучания, в соответствии с частотой основного тона и/или его гармоник. Тем не менее, даже при одинаковой высоте звучания, звук, например, скрипки отличается на слух от звука рояля. Это связано с тем, что помимо высоты звучания слух способен оценить также общий характер, окрас звучания, его тембр . Тембром звука называется такое качество восприятия звука, которое, в не зависимости от частоты и амплитуды, позволяет отличить одно звучание от другого. Тембр звука зависит от общего спектрального состава звучания и интенсивности спектральных составляющих, то есть от общего вида звуковой волны, и фактически не зависит от высоты основного тона. Немалое влияние на тембр звучания оказывает явление инерционности слуховой системы. Это выражается, например, в том, что на распознавание тембра слуху требуется около 200 мс.

Громкость звука – это одно из тех понятий, которые мы употребляем ежедневно, не задумываясь при этом над тем, какой физический смысл оно несет. Громкость звука – это психологическая характеристика восприятия звука, определяющая ощущение силы звука. Громкость звука, хотя и жестко связана с интенсивностью, но нарастает непропорционально увеличению интенсивности звукового сигнала. На громкость влияет частота и длительность звукового сигнала. Чтобы правильно судить о связи ощущения звука (его громкости) с раздражением (уровнем силы звука), нужно учитывать, что изменение чувствительности слухового аппарата человека не точно подчиняется логарифмическому закону.

Существуют несколько единиц измерения громкости звука. Первая единица – «фон » (в англ. обозначении - « phon»). Говорят, «уровень громкости звука составляет n фон», если средний слушатель оценивает сигнал как равный по громкости тону с частотой 1000 Гц и уровнем давления в n дБ. Фон, как и децибел, по сути не является единицей измерения, а представляет собой относительную субъективную характеристику интенсивности звука. На рис. 5 представлен график с кривыми равных громкостей.

Каждая кривая на графике показывает уровень равной громкости с начальной точкой отсчета на частоте 1000 Гц. Иначе говоря, каждая линия соответствует некоторому значению громкости, измеренной в фонах. Например, линия «10 фон» показывает уровни сигнала в дБ на разных частотах, воспринимаемых слушателем как равные по громкости сигналу с частотой 1000 Гц и уровнем 10 дБ. Важно заметить, что приведенные кривые не являются эталонными, а приведены в качестве примера. Современные исследования ясно свидетельствуют, что вид кривых в достаточной степени зависит от условий проведения измерений, акустических характеристик помещения, а также от типа источников звука (громкоговорители, наушники). Таким образом, эталонного графика кривых равных громкостей не существует.

Важной деталью восприятия звука слуховым аппаратом человека является так называемый порог слышимости - минимальная интенсивность звука, с которой начинается восприятие сигнала. Как мы видели, уровни равной громкости звука для человека не остаются постоянным с изменением частоты. Иными словами, чувствительность слуховой системы сильно зависит как от громкости звука, так и от его частоты. В частности, и порог слышимости также не одинаков на разных частотах. Например, порог слышимости сигнала на частоте около 3 кГц составляет чуть менее 0 дБ, а на частоте 200 Гц – около 15 дБ. Напротив, болевой порог слышимости мало зависит от частоты и колеблется в пределах 100 – 130 дБ. График порога слышимости представлен на рис. 6. Обратим внимание, что поскольку, острота слуха с возрастом меняется, график порога слышимости в верхней полосе частот различен для разных возрастов.

Частотные составляющие с амплитудой ниже порога слышимости (то есть находящиеся под графиком порога слышимости) оказываются незаметными на слух.

Интересным и исключительно важным является тот факт, что порог слышимости слуховой системы, также как и кривые равных громкостей, является непостоянным в разных условиях. Представленные выше графики порога слышимости справедливы для тишины. В случае проведения опытов по измерению порога слышимости не в полной тишине, а, например, в зашумленной комнате или при наличии какого-то постоянного фонового звука, графики окажутся другими. Это, в общем, совсем не удивительно. Ведь идя по улице и разговаривая с собеседником, мы вынуждены прерывать свою беседу, когда мимо нас проезжает какой-нибудь грузовик, поскольку шум грузовика не дает нам слышать собеседника. Этот эффект называется частотной маскировкой . Причиной появления эффекта частотной маскировки является схема восприятия звука слуховой системой. Мощный по амплитуде сигнал некоторой частоты f m вызывает сильные возмущения базилярной мембраны на некотором ее отрезке. Близкий по частоте, но более слабый по амплитуде сигнал с частотой f уже не способен повлиять на колебания мембраны, и поэтому остается «незамеченным» нервными окончаниями и мозгом.

Эффект частотной маскировки справедлив для частотных составляющих, присутствующих в спектре сигнала в одно и то же время. Однако в виду инерционности слуха, эффект маскировки может распространяться и во времени. Так некоторая частотная составляющая может маскировать другую частотную составляющую даже тогда, когда они появляются в спектре не одновременно, а с некоторой задержкой во времени. Этот эффект называется временн о й маскировкой . В случае, когда маскирующий тон появляется по времени раньше маскируемого, эффект называют пост-маскировкой . В случае же, когда маскирующий тон появляется позже маскируемого (возможен и такой случай), эффект называет пре-маскировкой .

2.5. Пространственное звучание.

Человек слышит двумя ушами и за счет этого способен различать направление прихода звуковых сигналов. Эту способность слуховой системы человека называют бинауральным эффектом . Механизм распознавания направления прихода звуков сложен и, надо сказать, что в его изучении и способах применения еще не поставлена точка.

Уши человека расставлены на некотором расстоянии по ширине головы. Скорость распространения звуковой волны относительно невелика. Сигнал, приходящий от источника звука, находящегося напротив слушателя, приходит в оба уха одновременно, и мозг интерпретирует это как расположение источника сигнала либо позади, либо спереди, но не сбоку. Если же сигнал приходит от источника, смещенного относительно центра головы, то звук приходит в одно ухо быстрее, чем во второе, что позволяет мозгу соответствующим образом интерпретировать это как приход сигнала слева или справа и даже приблизительно определить угол прихода. Численно, разница во времени прихода сигнала в левое и правое ухо, составляющая от 0 до 1 мс, смещает мнимый источник звука в сторону того уха, которое воспринимает сигнал раньше. Такой способ определения направления прихода звука используется мозгом в полосе частот от 300 Гц до 1 кГц. Направление прихода звука для частот расположенных выше 1 кГц определяется мозгом человека путем анализа громкости звука. Дело в том, что звуковые волны с частотой выше 1 кГц быстро затухают в воздушном пространстве. Поэтому интенсивность звуковых волн, доходящих до левого и правого ушей слушателя, отличаются на столько, что позволяет мозгу определять направление прихода сигнала по разнице амплитуд. Если звук в одном ухе слышен лучше, чем в другом, следовательно источник звука находится со стороны того уха, в котором он слышен лучше. Немаловажным подспорьем в определении направления прихода звука является способность человека повернуть голову в сторону кажущегося источника звука, чтобы проверить верность определения. Способность мозга определять направление прихода звука по разнице во времени прихода сигнала в левое и правое ухо, а также путем анализа громкости сигнала используется в стереофонии .

Имея всего два источника звука можно создать у слушателя ощущение наличия мнимого источника звука между двумя физическими. Причем этот мнимый источник звука можно «расположить» в любой точке на линии, соединяющей два физических источника. Для этого нужно воспроизвести одну аудио запись (например, со звуком рояля) через оба физических источника, но сделать это с некоторой временно й задержкой в одном из них и соответствующей разницей в громкости. Грамотно используя описанный эффект можно при помощи двухканальной аудио записи донести до слушателя почти такую картину звучания, какую он ощутил бы сам, если бы лично присутствовал, например, на каком-нибудь концерте. Такую двухканальную запись называют стереофонической. Одноканальная же запись называется монофонической .

На самом деле, для качественного донесения до слушателя реалистичного пространственного звучания обычной стереофонической записи оказывается не всегда достаточно. Основная причина этого кроется в том, что стерео сигнал, приходящий к слушателю от двух физических источников звука, определяет расположение мнимых источников лишь в той плоскости, в которой расположены реальные физические источники звука. Естественно, «окружить слушателя звуком» при этом не удается. По большому счету по той же причине заблуждением является и мысль о том, что объемное звучание обеспечивается квадрофонической (четырехканальной) системой (два источника перед слушателем и два позади него). В целом, путем выполнения многоканальной записи нам удается лишь донести до слушателя тот звук, каким он был «услышан» расставленной нами звукопринимающей аппаратурой (микрофонами), и не более того. Для воссоздания же более или менее реалистичного, действительно объемного звучания прибегают к применению принципиально других подходов, в основе которых лежат более сложные приемы, моделирующие особенности слуховой системы человека, а также физические особенности и эффекты передачи звуковых сигналов в пространстве.

Одним из таких инструментов является использование функций HRTF (Head Related Transfer Function). Посредством этого метода (по сути – библиотеки функций) звуковой сигнал можно преобразовать специальным образом и обеспечить достаточно реалистичное объемное звучание, рассчитанное на прослушивание даже в наушниках.

Суть HRTF – накопление библиотеки функций, описывающих психофизическую модель восприятия объемности звучания слуховой системой человека. Для создания библиотек HRTF используется искусственный манекен KEMAR (Knowles Electronics Manikin for Auditory Research) или специальное «цифровое ухо». В случае использования манекена суть проводимых измерений состоит в следующем. В уши манекена встраиваются микрофоны, с помощью которых осуществляется запись. Звук воспроизводится источниками, расположенными вокруг манекена. В результате, запись от каждого микрофона представляет собой звук, «прослушанный» соответствующим ухом манекена с учетом всех изменений, которые звук претерпел на пути к уху (затухания и искажения как следствия огибания головы и отражения от разных ее частей). Расчет функций HRTF производится с учетом исходного звука и звука, «услышанного» манекеном. Собственно, сами опыты заключаются в воспроизведении разных тестовых и реальных звуковых сигналов, их записи с помощью манекена и дальнейшего анализа. Накопленная таким образом база функций позволяет затем обрабатывать любой звук так, что при его воспроизведении через наушники у слушателя создается впечатление, будто звук исходит не из наушников, а откуда-то из окружающего его пространства.

Таким образом, HRTF представляет собой набор трансформаций, которые претерпевает звуковой сигнал на пути от источника звука к слуховой системе человека. Рассчитанные однажды опытным путем, HRTF могут быть применены для обработки звуковых сигналов с целью имитации реальных изменений звука на его пути от источника к слушателю. Не смотря на удачность идеи, HRTF имеет, конечно, и свои отрицательные стороны, однако в целом идея использования HRTF является вполне удачной. Использование HRTF в том или ином виде лежит в основе множества современных технологий пространственного звучания, таких как технологии QSound 3 D (Q3 D), EAX, Aureal3 D (A3 D) и другие.