Сатурн - шестая планета от Солнца и вторая по размерам планета в Солнечной системе после Юпитера. Сатурн, а также Юпитер, Уран и Нептун, классифицируются как газовые гиганты. Сатурн назван в честь римского бога земледелия.

В основном Сатурн состоит из водорода, с примесями гелия и следами воды, метана, аммиака и тяжёлых элементов. Внутренняя область представляет собой небольшое ядро из железа, никеля и льда, покрытое тонким слоем металлического водорода и газообразным внешним слоем. Внешняя атмосфера планеты кажется из космоса спокойной и однородной, хотя иногда на ней появляются долговременные образования. Скорость ветра на Сатурне может достигать местами 1800 км/ч, что значительно больше, чем на Юпитере. У Сатурна имеется планетарное магнитное поле, занимающее промежуточное положение по напряжённости между магнитным полем Земли и мощным полем Юпитера. Магнитное поле Сатурна простирается на 1 000 000 километров в направлении Солнца. Ударная волна была зафиксирована «Вояджером-1» на расстоянии в 26,2 радиуса Сатурна от самой планеты, магнитопауза расположена на расстоянии в 22,9 радиуса.

Сатурн обладает заметной системой колец, состоящей главным образом из частичек льда, меньшего количества тяжёлых элементов и пыли. Вокруг планеты обращается 62 известных на данный момент спутника. Титан - самый крупный из них, а также второй по размерам спутник в Солнечной системе (после спутника Юпитера, Ганимеда), который превосходит по своим размерам Меркурий и обладает единственной среди спутников Солнечной системы плотной атмосферой.

В настоящее время на орбите Сатурна находится автоматическая межпланетная станция «Кассини», запущенная в 1997 году и достигшая системы Сатурна в 2004, в задачи которой входит изучение структуры колец, а также динамики атмосферы и магнитосферы Сатурна.

Сатурн среди планет Солнечной системы

Сатурн относится к типу газовых планет: он состоит в основном из газов и не имеет твёрдой поверхности. Экваториальный радиус планеты равен 60 300 км, полярный радиус - 54 400 км; из всех планет Солнечной системы Сатурн обладает наибольшим сжатием. Масса планеты в 95 раз превышает массу Земли, однако средняя плотность Сатурна составляет всего 0,69 г/см2, что делает его единственной планетой Солнечной системы, чья средняя плотность меньше плотности воды. Поэтому, хотя массы Юпитера и Сатурна различаются более, чем в 3 раза, их экваториальный диаметр различается только на 19 %. Плотность остальных газовых гигантов значительно больше (1,27-1,64 г/см2). Ускорение свободного падения на экваторе составляет 10,44 м/с2, что сопоставимо со значениями Земли и Нептуна, но намного меньше, чем у Юпитера.

Среднее расстояние между Сатурном и Солнцем составляет 1430 млн км (9,58 а. е.). Двигаясь со средней скоростью 9,69 км/с, Сатурн обращается вокруг Солнца за 10 759 дней (примерно 29,5 лет). Расстояние от Сатурна до Земли меняется в пределах от 1195 (8,0 а. е.) до 1660 (11,1 а. е.) млн км, среднее расстояние во время их противостояния около 1280 млн км. Сатурн и Юпитер находятся почти в точном резонансе 2:5. Поскольку эксцентриситет орбиты Сатурна 0,056, то разность расстояния до Солнца в перигелии и афелии составляет 162 млн км.

Видимые при наблюдениях характерные объекты атмосферы Сатурна вращаются с разной скоростью в зависимости от широты. Как и в случае Юпитера, имеется несколько групп таких объектов. Так называемая «Зона 1» имеет период вращения 10 ч 14 мин 00 с (то есть скорость составляет 844,3°/день). Она простирается от северного края южного экваториального пояса до южного края северного экваториального пояса. На всех остальных широтах Сатурна, составляющих «Зону 2», период вращения первоначально был оценён в 10 ч 39 мин 24 с (скорость 810,76°/день). Впоследствии данные были пересмотрены: была дана новая оценка - 10 ч, 34 мин и 13 с. «Зона 3», наличие которой предполагается на основе наблюдений радиоизлучения планеты в период полёта «Вояджера-1», имеет период вращения 10 ч 39 мин 22,5 с (скорость 810,8°/день).

В качестве продолжительности оборота Сатурна вокруг оси принята величина 10 часов, 34 минуты и 13 секунд.Точная величина периода вращения внутренних частей планеты остаётся трудноизмеряемой. Когда аппарат «Кассини» достиг Сатурна в 2004 году, было обнаружено, что согласно наблюдениям радиоизлучения длительность оборота внутренних частей заметно превышает период вращения в «Зоне 1» и «Зоне 2» и составляет приблизительно 10 ч 45 мин 45 с (± 36 с).

В марте 2007 года было обнаружено, что вращение диаграммы направленности радиоизлучения Сатурна порождено конвекционными потоками в плазменном диске, которые зависят не только от вращения планеты, но и от других факторов. Было также сообщено, что колебание периода вращения диаграммы направленности связано с активностью гейзера на спутнике Сатурна - Энцеладе. Заряженные частицы водяных паров на орбите планеты приводят к искажению магнитного поля и, как следствие, картины радиоизлучения. Обнаруженная картина породила мнение, что на сегодняшний день вообще не существует корректного метода определения скорости вращения ядра планеты.

Происхождение

Происхождение Сатурна (равно как и Юпитера) объясняют две основные гипотезы. Согласно гипотезе «контракции», состав Сатурна, схожий с Солнцем (большая доля водорода), и, как следствие, малую плотность можно объяснить тем, что в процессе формирования планет на ранних стадиях развития Солнечной системы в газопылевом диске образовались массивные «сгущения», давшие начало планетам, то есть Солнце и планеты формировались схожим образом. Тем не менее, эта гипотеза не может объяснить различия состава Сатурна и Солнца.

Гипотеза «аккреции» гласит, что процесс образования Сатурна происходил в два этапа. Сначала в течение 200 миллионов лет шёл процесс формирования твёрдых плотных тел, наподобие планет земной группы. Во время этого этапа из области Юпитера и Сатурна диссипировала часть газа, что затем повлияло на различие в химическом составе Сатурна и Солнца. Затем начался второй этап, когда самые крупные тела достигли удвоенной массы Земли. На протяжении нескольких сотен тысяч лет длился процесс аккреции газа на эти тела из первичного протопланетного облака. На втором этапе температура наружных слоёв Сатурна достигала 2000 °C.

Атмосфера и строение

Полярное сияние над северным полюсом Сатурна. Сияния окрашены в голубой цвет, а лежащие внизу облака - в красный. Прямо под сияниями видно обнаруженное ранее шестиугольное облако

Верхние слои атмосферы Сатурна состоят на 96,3 % из водорода (по объёму) и на 3,25 % - из гелия (по сравнению с 10 % в атмосфере Юпитера). Имеются примеси метана, аммиака, фосфина, этана и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских. Облака нижней части атмосферы состоят из гидросульфида аммония (NH4SH) или воды.

По данным «Вояджеров», на Сатурне дуют сильные ветры, аппараты зарегистрировали скорости воздушных потоков 500 м/с. Ветры дуют в основном в восточном направлении (по направлению осевого вращения). Их сила ослабевает при удалении от экватора; при удалении от экватора появляются также и западные атмосферные течения. Ряд данных указывают, что циркуляция атмосферы происходит не только в слое верхних облаков, но и на глубине, по крайней мере, до 2 тыс. км. Кроме того, измерения «Вояджера-2» показали, что ветры в южном и северном полушариях симметричны относительно экватора. Есть предположение, что симметричные потоки как-то связаны под слоем видимой атмосферы.

В атмосфере Сатурна иногда появляются устойчивые образования, представляющие собой сверхмощные ураганы. Аналогичные объекты наблюдаются и на других газовых планетах Солнечной системы (см. Большое красное пятно на Юпитере, Большое тёмное пятно на Нептуне). Гигантский «Большой белый овал» появляется на Сатурне примерно один раз в 30 лет, в последний раз он наблюдался в 1990 году (менее крупные ураганы образуются чаще).

12 ноября 2008 года камеры станции «Кассини» получили изображения северного полюса Сатурна в инфракрасном диапазоне. На них исследователи обнаружили полярные сияния, подобные которым не наблюдались ещё ни разу в Солнечной системе. Также данные сияния наблюдались в ультрафиолетовом и видимом диапазонах. Полярные сияния представляют собой яркие непрерывные кольца овальной формы, окружающие полюс планеты. Кольца располагаются на широте, как правило, в 70-80°. Южные кольца располагаются на широте в среднем 75 ± 1°, а северные - ближе к полюсу примерно на 1,5°, что связано с тем, что в северном полушарии магнитное поле несколько сильнее. Иногда кольца становятся спиральной формы вместо овальной.

В отличие от Юпитера полярные сияния Сатурна не связаны с неравномерностью вращения плазменного слоя во внешних частях магнитосферы планеты. Предположительно, они возникают из-за магнитного пересоединения под действием солнечного ветра. Форма и вид полярных сияний Сатурна сильно меняются с течением времени. Их расположение и яркость сильно связаны с давлением солнечного ветра: чем оно больше, тем сияния ярче и ближе к полюсу. Среднее значение мощности полярного сияния составляет 50 ГВт в диапазоне 80-170 нм (ультрафиолет) и 150-300 ГВт в диапазоне 3-4 мкм (инфракрасный).

28 декабря 2010 года «Кассини» сфотографировал шторм, напоминающий сигаретный дым. Ещё один, особенно мощный шторм, был зафиксирован 20 мая 2011 года.

Гексагональное образование на северном полюсе


Гексагональное атмосферное образование на северном полюсе Сатурна

Облака на северном полюсе Сатурна образуют шестиугольник - гигантский гексагон. Впервые это обнаружено во время пролётов «Вояджера» около Сатурна в 1980-х годах, подобное явление никогда не наблюдалось ни в одном другом месте Солнечной системы. Шестиугольник располагается на широте 78°, и каждая его сторона составляет приблизительно 13 800 км, то есть больше диаметра Земли. Период его вращения составляет 10 часов 39 минут. Если южный полюс Сатурна с его вращающимся ураганом не кажется странным, то северный полюс можно считать гораздо более необычным. Этот период совпадает с периодом изменения интенсивности радиоизлучения, который в свою очередь принят равным периоду вращения внутренней части Сатурна.

Странная структура облаков показана на инфракрасном изображении, полученном обращающимся вокруг Сатурна космическим аппаратом «Кассини» в октябре 2006 года. Изображения показывают, что шестиугольник оставался стабильным все 20 лет после полёта «Вояджера». Фильмы, показывающие северный полюс Сатурна, демонстрируют сохранение шестиугольной структуры облаков во время их вращения. Отдельные облака на Земле могут иметь форму шестиугольника, но, в отличие от них, у облачной системы на Сатурне есть шесть хорошо выраженных сторон почти равной длины. Внутри этого шестиугольника могут поместиться четыре Земли. Предполагается, что в районе гексагона имеется значительная неравномерность облачности. Области, в которых облачность практически отсутствует, имеют высоту до 75 км.

Полного объяснения этого явления пока нет, однако учёным удалось провести эксперимент, который довольно точно смоделировал эту атмосферную структуру. Исследователи поставили 30-литровый баллон с водой на вращающуюся установку, причём внутри были размещены маленькие кольца, вращающиеся быстрее ёмкости. Чем больше была скорость кольца, тем больше форма вихря, который образовывался при совокупном вращении элементов установки, отличалась от круговой. При эксперименте был получен в том числе и вихрь в форме гексагона.

Внутреннее строение


Внутреннее строение Сатурна

В глубине атмосферы Сатурна растут давление и температура, и водород переходит в жидкое состояние, однако этот переход является постепенным. На глубине около 30 тыс. км водород становится металлическим (а давление достигает около 3 миллионов атмосфер). Циркуляция электротоков в металлическом водороде создаёт магнитное поле (гораздо менее мощное, чем у Юпитера). В центре планеты находится массивное ядро из тяжёлых материалов - камня, железа и, предположительно, льда. Его масса составляет приблизительно от 9 до 22 масс Земли. Температура ядра достигает 11 700 °C, а энергия, которую оно излучает в космос, в 2,5 раза больше энергии, которую Сатурн получает от Солнца. Значительная часть этой энергии генерируется за счёт механизма Кельвина - Геймгольца, который заключается в том, что когда температура планеты падает, то падает и давление в ней. В результате она сжимается, а потенциальная энергия её вещества переходит в тепло. При этом, однако, было показано, что этот механизм не может являться единственным источником энергии планеты. Предполагается, что дополнительная часть тепла создаётся за счёт конденсации и последующего падения капель гелия через слой водорода (менее плотный, чем капли) вглубь ядра. Результатом является переход потенциальной энергии этих капель в тепловую. По оценкам, область ядра имеет диаметр приблизительно 25 000 км.

Магнитное поле

Структура магнитосферы Сатурна

Магнитосфера Сатурна открыта космическим аппаратом «Пионер-11» в 1979 году. По размерам уступает только магнитосфере Юпитера. Магнитопауза, граница между магнитосферой Сатурна и солнечным ветром, расположена на расстоянии порядка 20 радиусов Сатурна от его центра, а хвост магнитосферы протягивается на сотни радиусов. Магнитосфера Сатурна наполнена плазмой, продуцируемой планетой и её спутниками. Среди спутников наибольшую роль играет Энцелад, гейзеры которого ежесекундно выбрасывают около 300-600 кг водяного пара, часть которого ионизируется магнитным полем Сатурна.

Взаимодействие между магнитосферой Сатурна и солнечным ветром генерирует яркие овалы полярного сияния вокруг полюсов планеты, наблюдаемые в видимом, ультрафиолетовом и инфракрасном свете. Магнитное поле Сатурна, так же как и Юпитера, создается за счёт эффекта динамо при циркуляции металлического водорода во внешнем ядре. Магнитное поле является почти дипольным, так же как и у Земли, с северным и южным магнитными полюсами. Северный магнитный полюс находится в северном полушарии, а южный - в южном, в отличие от Земли, где расположение географических полюсов противоположно расположению магнитных. Величина магнитного поля на экваторе Сатурна 21 мкTл (0,21 Гс), что соответствует дипольному магнитному моменту примерно в 4,6 ? 10 18 Tл м3. Магнитный диполь Сатурна жёстко связан с его осью вращения, поэтому магнитное поле очень асимметрично. Диполь несколько смещён вдоль оси вращения Сатурна к северному полюсу.

Внутреннее магнитное поле Сатурна отклоняет солнечный ветер от поверхности планеты, предотвращая его взаимодействие с атмосферой, и создаёт область, называемую магнитосферой и наполненную плазмой совсем иного вида, чем плазма солнечного ветра. Магнитосфера Сатурна - вторая по величине магнитосфера в Солнечной системе, наибольшая - магнитосфера Юпитера. Как и в магнитосфере Земли, граница между солнечным ветром и магнитосферой называется магнитопаузой. Расстояние от магнитопаузы до центра планеты (по прямой Солнце - Сатурн) варьируется от 16 до 27 Rs (Rs = 60 330 км - экваториальный радиус Сатурна). Расстояние зависит от давления солнечного ветра, который зависит от солнечной активности. Среднее расстояние до магнитопаузы составляет 22 Rs. С другой стороны планеты солнечный ветер растягивает магнитное поле Сатурна в длинный магнитный хвост.

Исследования Сатурна

Сатурн - одна из пяти планет Солнечной системы, легко видимых невооружённым глазом с Земли. В максимуме блеск Сатурна превышает первую звёздную величину. Чтобы наблюдать кольца Сатурна, необходим телескоп диаметром не менее 15 мм. При апертуре инструмента в 100 мм видны более тёмная полярная шапка, тёмная полоса у тропика и тень колец на планете. А при 150-200 мм станут заметны четыре - пять полос облаков в атмосфере и неоднородности в них, но их контраст будет заметно меньше, чем у юпитерианских.

Вид Сатурна в современный телескоп (слева) и в телескоп времён Галилея (справа)

Впервые наблюдая Сатурн через телескоп в 1609-1610 годах, Галилео Галилей заметил, что Сатурн выглядит не как единое небесное тело, а как три тела, почти касающихся друг друга, и высказал предположение, что это два крупных «компаньона» (спутника) Сатурна. Два года спустя Галилей повторил наблюдения и, к своему изумлению, не обнаружил спутников.

В 1659 году Гюйгенс с помощью более мощного телескопа выяснил, что «компаньоны» - это на самом деле тонкое плоское кольцо, опоясывающее планету и не касающееся её. Гюйгенс также открыл самый крупный спутник Сатурна - Титан. Начиная с 1675 года изучением планеты занимался Кассини. Он заметил, что кольцо состоит из двух колец, разделённых чётко видимым зазором - щелью Кассини, и открыл ещё несколько крупных спутников Сатурна: Япет, Тефию, Диону и Рею.

В дальнейшем значительных открытий не было до 1789 года, когда У. Гершель открыл ещё два спутника - Мимас и Энцелад. Затем группой британских астрономов был открыт спутник Гиперион, с формой, сильно отличающейся от сферической, находящийся в орбитальном резонансе с Титаном. В 1899 году Уильям Пикеринг открыл Фебу, которая относится к классу нерегулярных спутников и не вращается синхронно с Сатурном как большинство спутников. Период её обращения вокруг планеты - более 500 дней, при этом обращение идёт в обратном направлении. В 1944 году Джерардом Койпером было открыто наличие мощной атмосферы на другом спутнике - Титане. Данное явление для спутника уникально в Солнечной системе.

В 1990-х Сатурн, его спутники и кольца неоднократно исследовались космическим телескопом Хаббл. Долговременные наблюдения дали немало новой информации, которая была недоступна для «Пионера-11» и «Вояджеров» при их однократном пролёте мимо планеты. Также было открыто несколько спутников Сатурна, и определена максимальная толщина его колец. При измерениях, проведённых 20-21 ноября 1995 года, была определена их детальная структура. В период максимального наклона колец в 2003 году был получены 30 изображений планеты в различных диапазонах длин волн, что на тот момент дало наилучший охват по спектру излучений за всю историю наблюдений. Эти изображения позволили учёным лучше изучить динамические процессы, происходящие в атмосфере, и создавать модели сезонного поведения атмосферы. Также широкомасштабные наблюдения Сатурна велись Южной Европейской обсерваторией в период с 2000 по 2003 год. Было обнаружено несколько маленьких спутников неправильной формы.

Исследования с помощью космических аппаратов


Затмение Солнца Сатурном 15 сентября 2006. Фото межпланетной станции Кассини с расстояния 2,2 млн км

В 1979 г. автоматическая межпланетная станция (АМС) США «Пионер-11» впервые в истории пролетела вблизи Сатурна. Изучение планеты началось 2 августа 1979 года. После окончательного сближения аппарат сделал полёт в плоскости колец Сатурна 1 сентября 1979 года. Полёт происходил на высоте на 20 000 км выше максимальной высоты облачности планеты. Были получены изображения планеты и некоторых её спутников, однако их разрешение было недостаточно для того, чтобы разглядеть детали поверхности. Также, ввиду малой освещённости Сатурна Солнцем, изображения были слишком тусклые. Аппарат также изучал кольца. В числе открытий было обнаружение тонкого F кольца. Кроме того, было обнаружено, что многие участки, видимые с Земли как светлые, были видны с «Пионера-11» как тёмные, и наоборот. Также аппаратом была измерена температура Титана. Исследования планеты продолжались до 15 сентября, после чего аппарат полетел к более внешним частям Солнечной системы.

В 1980-1981 годах за «Пионером-11» последовали также американские АМС «Вояджер-1» и «Вояджер-2». «Вояджер-1» сблизился с планетой 13 ноября 1980 года, но его исследование Сатурна началось на три месяца раньше. Во время прохождения был сделан ряд фотографий в высоком разрешении. Удалось получить изображение спутников: Титана, Мимаса, Энцелада, Тефии, Дионы, Реи. При этом аппарат пролетел около Титана на расстоянии всего 6500 км, что позволило собрать данные о его атмосфере и температуре. Было установлено, что атмосфера Титана настолько плотная, что не пропускает достаточного количества света в видимом диапазоне, поэтому фотографий деталей его поверхности получить не удалось. После этого аппарат покинул плоскость эклиптики Солнечной системы, чтобы заснять Сатурн с полюса.

Сатурн и его спутники - Титан, Янус, Мимас и Прометей - на фоне колец Сатурна, видимых с ребра и диска планеты-гиганта

Годом позже, 25 августа 1981 года, к Сатурну приблизился «Вояджер-2». За время своего пролёта аппарат произвёл исследование атмосферы планеты с помощью радара. Были получены данные о температуре и плотности атмосферы. На Землю было отправлено около 16 000 фотографий с наблюдениями. К сожалению, во время полётов система поворота камеры заклинилась на несколько суток, и часть необходимых изображений получить не удалось. Затем аппарат, используя силу притяжения Сатурна, развернулся и полетел по направлению к Урану. Также эти аппараты впервые обнаружили магнитное поле Сатурна и исследовали его магнитосферу, наблюдали штормы в атмосфере Сатурна, получили детальные снимки структуры колец и выяснили их состав. Были открыты щель Максвелла и щель Килера в кольцах. Кроме того, около колец было открыто несколько новых спутников планеты.

В 1997 г. к Сатурну была запущена АМС «Кассини-Гюйгенс», которая после 7 лет полёта 1 июля 2004 г. достигла системы Сатурна и вышла на орбиту вокруг планеты. Основными задачами этой миссии, рассчитанной первоначально на 4 года, являлось изучение структуры и динамики колец и спутников, а также изучение динамики атмосферы и магнитосферы Сатурна и детальное изучение крупнейшего спутника планеты - Титана.

До выхода на орбиту в июне 2004 года АМС прошла мимо Фебы и послала на Землю её снимки в высоком разрешении и другие данные. Кроме того, американский орбитальный аппарат «Кассини» неоднократно пролетал у Титана. Были получены изображения больших озёр и их береговой линии со значительным количеством гор и островов. Затем специальный европейский зонд «Гюйгенс» отделился от аппарата и на парашюте 14 января 2005 года спустился на поверхность Титана. Спуск занял 2 часа 28 минут. Во время спуска «Гюйгенс» отбирал пробы атмосферы. Согласно интерпретации данных с зонда «Гюйгенс», верхняя часть облаков состоит из метанового льда, а нижняя - из жидких метана и азота.

С начала 2005 года учёные наблюдали за излучением, идущим с Сатурна. 23 января 2006 года на Сатурне произошёл шторм, который дал вспышку, в 1000 раз превосходящую по мощности обычное излучение. В 2006 году НАСА доложило об обнаружении аппаратом очевидных следов воды, которые извергаются гейзерами Энцелада. В мае 2011 года учёные НАСА заявили, что Энцелад «оказался наиболее приспособленным для жизни местом в Солнечной системе после Земли».

Сатурн и его спутники: в центре снимка - Энцелад, справа, крупным планом, видна половинка Реи, из-за которой выглядывает Мимас. Фотография сделана зондом «Кассини», июль 2011

Фотографии, сделанные «Кассини», позволили сделать другие значительные открытия. По ним были обнаружены ранее неоткрытые кольца планеты вне главной яркой области колец и внутри колец G и Е. Данные кольца получили названия R/2004 S1 и R/2004 S2. Предполагается, что материал для этих колец мог образоваться вследствие удара о Янус или Эпиметей метеорита или кометы. В июле 2006 года снимки «Кассини» позволили установить наличие углеводородного озера недалеко от северного полюса Титана. Окончательно этот факт был подтверждён дополнительными снимками в марте 2007 года. В октябре 2006 года на южном полюсе Сатурна были обнаружен ураган диаметром 8000 км.

В октябре 2008 года «Кассини» передал изображения северного полушария планеты. С 2004 года, когда «Кассини» подлетел к ней, произошли заметные изменения, и теперь она окрашена в необычные цвета. Причины этого пока непонятны. Предполагается, что недавнее изменение цветов связано со сменой времён года. C 2004 года по 2 ноября 2009 года с помощью аппарата были открыты 8 новых спутников. Основная миссия «Кассини» закончилась в 2008 году, когда аппарат совершил 74 витка вокруг планеты. Затем задачи зонда были продлены до сентября 2010 года, а потом до 2017 года для изучения полного цикла сезонов Сатурна.

В 2009 году появился совместный американско-европейский проект НАСА и ЕКА по запуску АМС Titan Saturn System Mission для изучения Сатурна и его спутников Титана и Энцелада. В ходе него станция 7-8 лет будет лететь к системе Сатурна, а затем станет спутником Титана на два года. Также с неё будут спущены воздушный шар-зонд в атмосферу Титана и посадочный модуль (возможно, плавающий).

Спутники

Крупнейшие спутники - Мимас, Энцелад, Тефия, Диона, Рея, Титан и Япет - были открыты к 1789 году, однако и по сегодняшний день остаются основными объектами исследований. Диаметры этих спутников варьируются в пределе от 397 (Мимас) до 5150 км (Титан), большая полуось орбиты от 186 тыс. км (Мимас) до 3561 тыс. км (Япет). Распределение по массам соответствует распределению по диаметрам. Наибольшим эксцентриситетом орбиты обладает Титан, наименьшим - Диона и Тефия. Все спутники c известными параметрами находятся выше синхронной орбиты, что приводит к их постепенному удалению.

Спутники Сатурна

Самый крупный из спутников - Титан. Также он является вторым по величине в Солнечной системе в целом, после спутника Юпитера Ганимеда. Титан состоит примерно наполовину из водяного льда и наполовину - из скальных пород. Такой состав схож с некоторыми другими крупными спутниками газовых планет, но Титан сильно отличается от них составом и структурой своей атмосферы, которая преимущественно состоит из азота, также имеется небольшое количество метана и этана, которые образуют облака. Также Титан является единственным, кроме Земли, телом в Солнечной системе, для которого доказано существование жидкости на поверхности. Возможность возникновения простейших организмов не исключается учёными. Диаметр Титана на 50 % больше, чем у Луны. Также он превосходит размерами планету Меркурий, хотя и уступает ей по массе.

Другие основные спутники также имеют характерные особенности. Так, Япет имеет два полушария с разным альбедо (0,03-0,05 и 0,5 соответственно). Поэтому, когда Джованни Кассини открыл данный спутник, то обнаружил, что он виден только тогда, когда он находится по определённую сторону от Сатурна. Ведущее и заднее полушария Дионы и Реи также имеют свои отличия. Ведущее полушарие Дионы сильно кратерировано и однородно по яркости. Заднее полушарие содержит тёмные участки, а также паутину тонких светлых полосок, являющихся ледяными хребтами и обрывами. Отличительной особенностью Мимаса является огромный ударный кратер Гершель диаметром 130 км. Аналогично Тефия имеет кратер Одиссей диаметром 400 км. Энцелад согласно изображениям «Вояджер-2» имеет поверхность с участками разного геологического возраста, массивными кратерами в средних и высоких северных широтах и незначительными кратерами ближе к экватору.

По состоянию на февраль 2010 г. известно 62 спутника Сатурна. 12 из них открыты при помощи космических аппаратов: «Вояджер-1» (1980), «Вояджер-2» (1981), «Кассини» (2004-2007). Большинство спутников, кроме Гипериона и Фебы, имеет синхронное собственное вращение - они повёрнуты к Сатурну всегда одной стороной. Информации о вращении самых мелких спутников нет. Тефии и Дионе сопутствуют по два спутника в точках Лагранжа L4 и L5.

В течение 2006 г. команда учёных под руководством Дэвида Джуитта из Гавайского университета, работающих на японском телескопе Субару на Гавайях, объявляла об открытии 9 спутников Сатурна. Все они относятся к так называемым нерегулярным спутникам, которые отличаются ретроградной орбитой. Период их обращения вокруг планеты составляет от 862 до 1300 дней.

Кольца


Сравнение Сатурна и Земли

Сегодня известно, что у всех четырёх газообразных гигантов есть кольца, но у Сатурна они самые заметные. Кольца расположены под углом приблизительно 28° к плоскости эклиптики. Поэтому с Земли в зависимости от взаимного расположения планет они выглядят по-разному: их можно увидеть и в виде колец, и «с ребра». Как предполагал ещё Гюйгенс, кольца не являются сплошным твёрдым телом, а состоят из миллиардов мельчайших частиц, находящихся на околопланетной орбите. Это было доказано спектрометрическими наблюдениями А. А. Белопольского в Пулковской обсерватории и двумя другими учёными в 1895-1896 гг.

Существует три основных кольца и четвёртое - более тонкое. Все вместе они отражают больше света, чем диск самого Сатурна. Три основных кольца принято обозначать первыми буквами латинского алфавита. Кольцо В - центральное, самое широкое и яркое, оно отделяется от внешнего кольца А щелью Кассини шириной почти 4000 км, в которой находятся тончайшие, почти прозрачные кольца. Внутри кольца А есть тонкая щель, которая называется разделительной полосой Энке. Кольцо С, находящееся ещё ближе к планете, чем В, почти прозрачно.

Кольца Сатурна очень тонкие. При диаметре около 250 000 км их толщина не достигает и километра (хотя существуют на поверхности колец и своеобразные горы). Несмотря на свой внушительный вид, количество вещества, составляющего кольца, крайне незначительно. Если его собрать в один монолит, его диаметр не превысил бы 100 км. На изображениях, полученных зондами, видно, что на самом деле кольца образованы из тысяч колец, чередующихся со щелями; картина напоминает дорожки грампластинок. Частички, из которых состоят кольца, имеют размер от 1 сантиметров до 10 метров. По составу они на 93 % состоят изо льда с незначительными примесями, которые могут включать в себя сополимеры, образующихся под действием солнечного излучения и силикаты и на 7 % из углерода.

Существует согласованность движения частиц в кольцах и спутников планеты. Некоторые из них, так называемые «спутники-пастухи», играют роль в удержании колец на их местах. Мимас, например, находится в резонансе 2:1 c щелью Кассинии и под воздействием его притяжения вещество удаляется из неё, а Пан находится внутри разделительной полосы Энке. В 2010 году были получены данные от зонда Кассини, которые говорят о том, что кольца Сатурна колеблются. Колебания складываются из постоянных возмущений, которые вносит Мимас и самопроизвольных возмущений, возникающих из-за взаимодействия летящих в кольце частиц. Происхождение колец Сатурна ещё не совсем ясно. По одной из теорий, выдвинутой в 1849 году Эдуардом Рошем, кольца образовались вследствие распада жидкого спутника под действием приливных сил. По другой - спутник распался из-за удара кометы или астероида.

Общие сведения о Сатурне

Сатурн – это шестая по удаленности от Солнца планета (шестая планета Солнечной системы).

Сатурн относится к газовым гигантам и назван в честь древнеримского бога земледелия.

Сатурн известен людям с древних времен.

Соседями Сатурна являются Юпитер и Уран. Юпитер, Сатурн, Уран и Нептун обитают во внешней области Солнечной системы.

Считается, что в центре газового гиганта находится массивное ядро из твердых и тяжелых материалов (силикатов, металлов) и водяного льда.

Магнитное поле Сатурна создается за счет эффекта динамо при циркуляции металлического водорода во внешнем ядре и является почти дипольным с северным и южным магнитными полюсами.

Сатурн обладает самой выраженной системой планетарных колец в Солнечной системе.

У Сатурна на данный моменты обнаружены 82 естественных спутника.

Орбита Сатурна

Среднее расстояние от Сатурна до Солнца 1430 миллионов километров (9,58 астрономической единицы).

Перигелий (ближайшая к Солнцу точка орбиты): 1353,573 миллиона километров (9,048 астрономической единицы).

Афелий (самая далекая от Солнца точка орбиты): 1513,326 миллиона километров (10,116 астрономической единицы).

Средняя скорость движения Сатурна по орбите составляет около 9,69 километра в секунду.

Один оборот вокруг Солнца планета совершает за 29,46 земных лет.

Год на планете составляет 378,09 сатурнианских суток.

Расстояние от Сатурна до Земли варьируется в пределах от 1195 до 1660 миллионов километров.

Направление вращения Сатурна соответствует направлению вращения всех (кроме Венеры и Урана) планет Солнечной системы.

3D-модель Сатурна

Физические характеристики Сатурна

Сатурн – вторая по размеру планета в Солнечной системе.

Средний радиус Сатурна составляет 58 232 ± 6 километров, то есть около 9 радиусов Земли.

Площадь поверхности Сатурна составляет 42,72 миллиарда квадратных километров.

Средняя плотность Сатурна составляет 0,687 грамм на кубический сантиметр.

Ускорение свободного падения на Сатурне равно 10,44 метра на секунду в квадрате (1,067 g).

Масса Сатурна равна 5,6846 х 10 26 килограмм, что составляет около 95 масс Земли.

Атмосфера Сатурна

Двумя основными компонентами атмосферы Сатурна являются водород (около 96%) и гелий (около 3%).

В глубине атмосферы Сатурна растут давление и температура, а водород переходит в жидкое состояние, однако этот переход является постепенным. На глубине 30 000 километров водород становится металлическим, и давление там достигает 3 миллионов атмосфер.

В атмосфере Сатурна иногда появляются устойчивые сверхмощные ураганы.

Во время бурь и штормов на планете наблюдаются мощные разряды молний.

Полярные сияния на Сатурне представляют собой яркие непрерывные кольца овальной формы, окружающие полюса планеты.

Сравнительные размеры Сатурна и Земли

Кольца Сатурна

Диаметр колец оценивается в 250 000 километров, а их толщина не превышает 1 километра.

Ученые условно делят кольцевую систему Сатурна на три основных кольца и четвертое – более тонкое, при этом на самом деле кольца образованы из тысяч колец, чередующихся со щелями.

Система колец состоит главным образом из частичек льда (около 93%), меньшего количества тяжелых элементов и пыли.

Частички, из которых состоят кольца Сатурна, имеют размер от 1 сантиметра до 10 метров.

Кольца расположены под углом около 28 градусов к плоскости эклиптики, поэтому в зависимости от взаимного расположения планет с Земли они выглядят по-разному: и в виде колец, и с ребра.

Исследование Сатурна

Впервые наблюдая Сатурн в телескоп в 1609 – 1610 годах, Галилео Галилей заметил, что планета выглядит как три тела, почти касающиеся друг друга, и предположил, что это два крупных «компаньона» Сатурна, однако 2 года спустя не нашел тому подтверждение.

В 1659 году Христиан Гюйгенс с помощью более мощного телескопа выяснил, что «компаньоны» – это на самом деле тонкое плоское кольцо, опоясывающее планету и не касающееся ее.

В 1979 году автоматическая межпланетная станция «Pioneer 11» впервые в истории пролетела вблизи Сатурна, получив изображения планеты и некоторых ее спутников и открыв кольцо F.

В 1980 – 1981 годах систему Сатурна также посетили «Voyager-1» и «Voyager-2». Во время сближения с планетой был сделан ряд фотографий в высоком разрешении и получены данные о температуре и плотности атмосферы Сатурна, а также физических характеристиках его спутников, в том числе Титана.

С 1990-х Сатурн, его спутники и кольца неоднократно исследовались космическим телескопом «Hubble».

В 1997 году к Сатурну была запущена миссия «Cassini-Huygens», которая после 7 лет полета 1 июля 2004 года достигла системы Сатурна и вышла на орбиту вокруг планеты. Зонд «Huygens» отделился от аппарата и на парашюте 14 января 2005 года спустился на поверхность Титана, отобрав пробы атмосферы. За 13 лет научной деятельности космический аппарат «Cassini» перевернул представление ученых о системе газового гиганта. Миссия «Cassini» завершена 15 сентября 2017 года путем погружения космического аппарата в атмосферу Сатурна.

Средняя плотность Сатурна составляет всего 0,687 грамма на кубический сантиметр, что делает его единственной планетой Солнечной системы, чья средняя плотность ниже плотности воды.

За счет горячего ядра, температура которого достигает 11 700 градусов Цельсия, Сатурн излучает в космос в 2,5 раза больше энергии, чем получает от Солнца.

Облака на северном полюсе Сатурна образуют гигантский шестиугольник, и каждая его сторона составляет приблизительно 13 800 километров.

Некоторые спутники Сатурна, например Пан и Мимас, являются «пастухами колец»: их гравитация играет роль в удержании колец на их местах за счет резонанса с определенными участками кольцевой системы.

Считается, что Сатурн поглотит свои кольца через 100 миллионов лет.

В 1921 году пронесся слух, что кольца Сатурна исчезли. Это было связано с тем, что в момент наблюдений кольцевая система была обращена к Земле ребром и не могла быть рассмотрена с оборудованием того времени.

Фотография полученная с космического аппарата Кассини

Планета Сатурн — шестая по счету от Солнца. Об этой планете известно всем. Почти каждый, может легко узнать ее, потому что его кольца это его визитная карточка.

Общие сведения про планету Сатурн

Знаете ли вы, из чего сделаны ее знаменитые кольца? Кольца состоят из ледяных камней, имеющих размер от микронов до нескольких метров. Сатурн как и все планеты-гиганты, состоит в основном из газов. Его вращение варьирует от 10 часов и 39 минут до 10 часов 46 минут. Эти измерения основаны на радионаблюдениях планеты.

Изображение планеты Сатурн

При использовании новейших двигательных систем и ракетоносителей, космическому аппарату потребуется как минимум 6 лет и 9 месяцев, чтобы прибыть к планете.

На данный момент, на орбите с 2004 года находится единственный космический аппарат Кассини, он и является основным поставщиком научных данных и открытий вот уже много лет. Для детей планета Сатурн, как в принципе и для взрослых, поистине самая красивая из планет.

Общие характеристики

Самая большая планета Солнечной системы Юпитер. Но титул второй по размеру планеты принадлежит Сатурну.

Просто для сравнения, диаметр Юпитера около 143 тысяч километров, а Сатурна только 120 тысяч километров. Размер Юпитера в 1,18 раза больше чем у Сатурна, а по массе в 3,34 раза массивнее его.

По факту, Сатурн очень большой, но легкий. И если планету Сатурн погрузить в воду, она будет плавать на поверхности. Гравитация планеты составляет всего 91% от Земной.

Сатурн и Земля различаются по размеру в 9,4 раза и по массе в 95 раз. В объеме газового гиганта могли бы поместиться 763 таких планет как наша.

Орбита

Время полного оборота планеты вокруг Солнца составляет 29,7 лет. Как и у всех планет Солнечной системы, его орбита не является идеальным кругом, а имеет эллиптическую траекторию. Расстояние до Солнца в среднем равно 1,43 млрд км, или 9,58 а.е.

Ближайшая точка орбиты Сатурна, называется перигелий и расположена она в 9 астрономических единицах от Солнца (1 а.е. это среднее расстояние от Земли до Солнца).

Наиболее удаленная точка орбиты называется афелий и расположена она в 10,1 астрономических единиц от Солнца.

Кассини пересекает плоскость колец Сатурна.

Одна из интересных особенностей орбиты Сатурна заключается в следующем. Как и у Земли, ось вращения Сатурна наклонена относительно плоскости Солнца. На половине пути своей орбиты, южный полюс Сатурна обращен к Солнцу, а затем северный. В течение Сатурнианского года (почти 30 Земных лет), наступают периоды, когда планету видно с Земли с ребра и плоскость колец гиганта совпадает с нашим углом зрения, и они пропадают из виду. Все дело в том, что кольца чрезвычайно тонкие, поэтому с огромного расстояния их практически невозможно увидеть с ребра. В следующий раз кольца исчезнут для Земного наблюдателя в 2024-2025 годах. Так как год Сатурна длится почти 30 лет, с тех пор как Галилей впервые наблюдал его в телескоп в 1610 году, он обернулся вокруг Солнца примерно 13 раз.

Климатические особенности

Одним из интересных фактов, является то, что ось планеты наклонена к плоскости эклиптики (как и у Земли). И так же, как и у нас, на Сатурне существуют сезоны. На половине своей орбиты, Северное полушарие получает больше солнечной радиации, а затем все меняется и Южное полушарие купается в солнечном свете. Это создает огромные штормовые системы, которые значительно меняются в зависимости от расположения планеты на орбите.

Шторм в атмосфере Сатурна. Композитный снимок, цвета искусственные, были использованы фильтры MT3, MT2, CB2 и инфракрасные данные

Сезоны оказывают влияние на погоду планеты. В течение последних 30 лет ученые обнаружили, что скорость ветра вокруг экваториальных областей планеты сократилась примерно на 40%. Зонды НАСА Вояджер в 1980-1981 годах обнаружили, что скорость ветра достигает 1700 км/ч, а в настоящее время только около 1000 км/ч (измерения 2003 года).

Время полного оборота Сатурна вокруг своей оси составляет 10,656 часов. Ученым потребовалось много времени и исследований, чтобы найти столь точную цифру. Так как у планеты нет поверхности, то нет возможности наблюдать прохождения одних и тех же областей планеты, таким образом, оценивая ее скорость вращения. Ученые использовали радиоизлучения планеты для оценки скорости вращения и нахождения точной продолжительности дня.

Галерея изображений





























Снимки планеты сделанные телескопом Хаббл и космическим аппаратом Кассини.

Физические свойства

Снимок телескопа Хаббл

Экваториальный диаметр — 120 536 км, в 9,44 раза больше, чем у Земли;

Полярный диаметр — 108 728 км, в 8,55 раза больше, чем у Земли;

Площадь планеты равна 4,27 x 10*10 км2, что в 83,7 раз больше, чем у Земли;

Объем — 8,2713 x 10*14 км3, в 763,6 раз больше, чем у Земли;

Масса — 5,6846 x 10*26 кг, в 95,2 раз больше, чем у Земли;

Плотность — 0,687 г/см3, в 8 раз меньше, чем у Земли, Сатурн даже легче воды;

Данная информация неполная, более подробно про общие свойства планеты Сатурн, мы напишем ниже.

Сатурн имеет 62 спутника, фактически около 40% спутников в нашей Солнечной системе вращаются вокруг него. Многие из этих спутников очень малы и не видны с Земли. Последние были обнаружены космическим аппаратом Кассини, и ученые ожидают, что со временем аппарат найдет еще больше ледяных сателлитов.

Несмотря на то, что Сатурн слишком враждебен для любой формы жизни, которые мы знаем, что его спутник Энцелад один из наиболее подходящих кандидатов на поиски жизни. Энцелад примечателен тем, что имеет на своей поверхности ледяные гейзеры. Существует какой-то механизм (вероятно приливное воздействие Сатурна) который создает достаточно тепла для существования жидкой воды. Некоторые ученые считают, что есть шанс существования жизни на Энцеладе.

Формирование планеты

Как и остальные планеты, Сатурн сформировался из солнечной туманности около 4,6 миллиарда лет назад. Это солнечная туманность представляла собой обширное облако холодного газа и пыли, которое, возможно, столкнулось с другим облаком, или ударной волной сверхновой. Это событие и инициировало начало сжатия протосолнечной туманности с дальнейшим образованием Солнечной системы.

Облако сжималось все сильнее, пока не образовалась протозвезда в центре, которую окружал плоский диск материала. Внутренняя часть этого диска содержала больше тяжелых элементов, и сформировала планеты земной группы, в то время как внешняя область была достаточно холодная и, фактически, осталась нетронутой.

Материал солнечной туманности образовывал все больше и больше планетезималей. Эти планетезимали сталкивались вместе, сливаясь в планеты. В какой-то момент, в ранней истории Сатурна, его спутник размером примерно 300 км в поперечнике, был разорван на части его гравитацией и создал кольца, которые и сегодня вращаются вокруг планеты. Фактически основные параметры планеты, прямо зависели от места его образования и количества газа, которое он смог захватить.

Так как Сатурн меньше, чем Юпитер, он охлаждается быстрее. Астрономы считают, что как только его внешняя атмосфера остыла да 15 градусов по Кельвину, гелий сконденсировался в капли, которые стали опускаться к ядру. Трения этих капель разогрели планету, и теперь он испускает примерно в 2,3 раза больше энергии, чем получает от Солнца.

Формирование колец

Вид планеты из космоса

Главная отличительная черта Сатурна это кольца. Каким образом кольца сформировались? Есть несколько версий. Традиционная теория гласит, что кольца почти такого же возраста, как и сама планета и существуют в течение, по крайней мере, 4 миллиарда лет. В ранней истории гиганта, 300 км спутник слишком близко подошел к нему и был разорван на куски. Также существует вероятность, что два спутника столкнулись вместе, или в спутник попала достаточно большая комета или астероид, и он просто развалился прямо на орбите.

Альтернативная гипотеза образования колец

Другая гипотеза состоит в том, что не было никакого разрушения спутника. Вместо этого кольца, также как и сама планета образовались из солнечной туманности.

Но вот в чем проблема: лед в кольцах слишком чистый. Если кольца образовались вместе с Сатурном, миллиарды лет назад, то стоит ожидать, что они были бы полностью покрыты грязью от воздействий микрометеоритов. Но на сегодня мы видим, что они так чисты, как будто бы образовались менее 100 миллионов лет назад.

Вполне возможно, что кольца постоянно обновляют свой материал путем слипания и столкновения друг с другом, что затрудняет определение их возраста. Это одна из загадок, которые еще предстоит решить.

Атмосфера

Как и у остальных планет-гигантов, атмосфера Сатурна состоит из 75% водорода и 25% гелия, со следовыми количествами других веществ, таких как вода и метан.

Особенности атмосферы

Внешний вид планеты, в видимом свете, выглядит более спокойным, чем у Юпитера. Планета имеет полосы облаков в атмосфере, но они бледно-оранжевые и слабо заметны. Оранжевый цвет обусловлен соединениями серы в его атмосфере. В дополнение к сере, в верхних слоях атмосферы, есть небольшие количества азота и кислорода. Эти атомы вступают в реакции друг с другом и под воздействием Солнечного света образуют сложные молекулы, которые напоминают «смог». На различных длинах волн света, а также на улучшенных изображениях Кассини, атмосфера выглядит гораздо более впечатляющей и бурной.

Ветры в атмосфере

Атмосфера планеты формирует одни из самых быстрых ветров в Солнечной системе (быстрее только на Нептуне). Космический корабль НАСА Вояджер, который совершил пролет Сатурна, измерил скорость ветров, она оказалась в районе 1800 км/час на экваторе планеты. Большие белые бури формируются в пределах полос, которые вращаются вокруг планеты, но в отличие от Юпитера, эти бури существуют всего несколько месяцев и поглощаются атмосферой.

Облака видимой части атмосферы состоят из аммиака, и располагаются на 100 км ниже верхней части тропосферы (тропопаузы), где температура опускается до -250 ° С. Ниже этой границы облака состоят из гидросульфида аммония и находятся, приблизительно, на 170 км ниже. В этом слое температура составляет всего -70 градусов С. Самые глубокие облака состоит из воды и расположены примерно в 130 км ниже тропопаузы. Температура здесь составляет 0 градусов.

Чем ниже, тем больше давление и температура возрастает и газообразный водород медленно переходит в жидкость.

Шестиугольник

Одно из самых странных погодных явлений когда-либо обнаруженное это так называемый северный шестиугольный шторм.

Шестиугольные облака у планеты Сатурн были впервые найдены Вояджерами 1 и 2, после того, как они посетили планету более трех десятилетий назад. Совсем недавно, шестиугольник Сатурна удалось сфотографировать в мельчайших подробностях с помощью космического корабля НАСА Кассини, в настоящее время находящегося на орбите вокруг Сатурна. Шестиугольник (или гексагональный вихрь) имеет размер порядка 25 000 км в диаметре. В нем можно уместить 4 таких планеты как Земля.

Шестиугольник вращается с точно такой же скоростью, как и сама планета. Однако Северный полюс планеты отличается от Южного полюса, в центре которого имеется огромный ураган с гигантской воронкой. Каждая сторона шестиугольника имеет размер около 13 800 км, а вся конструкция совершает один оборот вокруг оси за 10 часов и 39 минут, так же, как и сама планета.

Причина образования шестиугольника

Так почему же вихрь на Северном полюсе имеет форму шестиугольника? Астрономы затрудняются стопроцентно ответить на этот вопрос, однако один из экспертов и членов команды, отвечающий за визуальный и инфракрасный спектрометр Кассини сказал: «Это очень странная буря, имеющая точные геометрические формы с шестью почти одинаковыми сторонами. Мы никогда не видели ничего подобного на других планетах».

Галерея снимков атмосферы планеты

Сатурн — планета бурь

Юпитер известен своими яростными бурями, которые хорошо видны через верхние слои атмосферы, особенно Большое красное пятно. Но на Сатурне тоже имеются бури, правда, они не такие большие и интенсивные, но по сравнению с Земными, они просто огромны.

Одним из крупнейших штормов было Большое белое пятно, также известное как Большой белый овал, которое наблюдали с помощью космического телескопа Хаббла в 1990 году. Такие бури, вероятно, появляются раз в год на Сатурне (один раз в 30 земных лет).

Атмосфера и поверхность

Планета очень напоминает мяч, сделанный почти полностью из водорода и гелия. Плотность и температура его изменяются по мере продвижения вглубь планеты.

Состав атмосферы

Внешняя атмосфера планеты состоит из 93% молекулярного водорода, остальное гелий и следовые количества аммиака, ацетилена, этана, фосфина и метана. Именно эти следовые элементы и создают видимые полосы и облака, которые мы видим на снимках.

Ядро

Общая схема схема строения Сатурна

Согласно теории аккреции ядро планеты каменное с большой массой, достаточной для того, чтобы захватить большое количество газов в ранней солнечной туманности. Его ядро, как и у других газовых гигантов, должно было бы сформироваться, и стать массивным гораздо быстрее, чем у других планет, чтобы успеть обрасти первичными газами.

Газовый гигант, скорее всего, сформировался из скалистых или ледяных компонентов, а низкая плотность, указывает на примеси жидкого металла и камня в ядре. Он является единственной планетой, у которой плотность ниже, чем у воды. Во всяком случае, внутреннее строение планеты Сатурн больше напоминает шар из густого сиропа с примесями каменных фрагментов.

Металлический водород

Металлический водород в ядре генерирует магнитное поле. Магнитное поле, созданное таким образом, немного слабее, что у Земли и распространяется только до орбиты его крупнейшего спутника Титана. Титан способствует появлению ионизированных частиц в магнитосфере планеты, которые создают в атмосфере полярные сияния. Вояджер 2 обнаружил высокое давление солнечного ветра на магнитосферу планеты. По данным измерений, сделанных во время той же миссии, магнитное поле распространяется только на 1,1 млн. км.

Размер планеты

Планета имеет экваториальный диаметр 120 536 км, что в 9,44 раз больше, чем у Земли. Радиус равен 60268 км, что делает его второй по величине планетой в нашей Солнечной системе, уступая только Юпитеру. Он, как и все другие планеты, представляет собой сплюснутый сфероид. Это означает, что его экваториальный диаметр больше, чем диаметр, измеренный через полюса. В случае Сатурна это расстояние довольно значительно, из-за высокой скорости вращения планеты. Полярный диаметр — 108728 км, что меньше экваториального на 9,796%, поэтому форма Сатурна — овальная.

Вокруг Сатурна

Продолжительность дня

Скорость вращения атмосферы и собственно самой планеты можно измерить тремя разными методами. Первый это замер скорости вращения планеты по облачному слою в экваториальной части планеты. Он имеет период вращения 10 часов и 14 минут. Если измерения проводить в других областях Сатурна, то скорость вращения будет составлять 10 часов 38 минут и 25,4 секунд. На сегодняшний день наиболее точный метод измерения продолжительности дня основан на замере радиоизлучения. Этот метод дает скорость вращения планеты равную 10 часам 39 минутам и 22,4 секундам. Несмотря на эти цифры, скорость вращения недр планеты в настоящее время, невозможно точно измерить.

Опять же, экваториальный диаметр планеты равен — 120536 км, а полярный — 108 728 км. Это важно знать, почему что эта разница в этих цифрах влияет на скорость вращения планеты. Такая же ситуация и на других планетах гигантах, особенно разница во вращении разных частей планеты выражена у Юпитера.

Продолжительность дня по радиоизлучению планеты

С помощью радиоизлучения, которое приходит из внутренних областей Сатурна, ученые смогли определить его период вращения. Заряженные частицы, захваченные его магнитным полем, излучают радиоволны, когда они взаимодействуют с магнитным полем Сатурна, примерно на частоте 100 килогерц.

Зонд Voyager измерял радиоизлучение планеты в течение девяти месяцев, когда пролетал мимо, в 1980-х годах и вращение было определено как 10 часов 39 минут 24 секунд, с погрешностью 7 секунд. Космический аппарат Улисс также провел измерения 15 лет спустя, и выдал результат 10 часов 45 минут 45 секунд, с 36 секундной погрешностью.

Выходит целых 6 минут разницы! Либо вращение планеты замедлилось за эти годы, или что-то мы упустили. Межпланетным зондом Кассини были измерены эти же радиоизлучения плазменным спектрометром, и ученые, что в дополнение к 6 минутной разнице в 30-ти летних измерениях выявили, что вращение также меняется на один процент в неделю.

Ученые считают, что это может быть связано с двумя вещами: солнечный ветер, приходящий от Солнца мешает измерениям, и частицы гейзеров Энцелада влияют на магнитное поле. Оба эти фактора приводят к тому, радиоизлучение меняется, и они могут быть причиной различных результатов одновременно.

Новые данные

В 2007 году было установлено, что некоторые точечные источники радиоизлучения планеты не соответствуют скорости вращения Сатурна. Некоторые ученые считают, что разница обусловлена воздействием спутника Энцелада. Водяные пары этих гейзеров попадают на орбиту планеты и ионизируются, влияя тем самым на магнитное поле планеты. Это замедляет вращение магнитного поля, но незначительно, по сравнению с вращением самой планеты. По текущим оценкам, вращение Сатурна, на основе различных измерений от космических аппаратов Cassini, Voyager и Pioneer составляет 10 часов 32 минут и 35 секунд по состоянию на сентябрь 2007 года.

Основные характеристики планеты, переданные Кассини, наводят на мысль, что солнечный ветер является наиболее вероятной причиной разницы в данных. Различия в измерениях вращения магнитного поля происходят каждые 25 дней, что соответствует периоду вращения Солнца. Скорость солнечного ветра тоже постоянно меняется, что должно учитываться. Энцелад может вносить долгосрочные изменения.

Гравитация

Сатурн — планета гигант и не имеет твердой поверхности, и то, что невозможно увидеть, так это его поверхность (мы видим лишь верхней облачный слой) и почувствовать силу тяжести. Но давайте представим, что существует некая условная граница, которая будет соответствовать его воображаемой поверхности. Какова была бы сила тяготения на планете, если вы бы смогли стоять на поверхности?

Хотя Сатурн имеет большую массу, чем Земля, (второе место в Солнечной системе по массе, после Юпитера), он к тому же самый “легкий” из всех планет Солнечной системы. Фактическая сила тяжести в любой точке его воображаемой поверхности будет составлять 91% от аналогичного показателя на Земле. Другими словами, если ваши весы показывают ваш вес равный 100 кг на Земле (о, ужас!), на «поверхности» Сатурна вы бы весили 92 кг (немного лучше, но все же).

Для сравнения, на «поверхности» Юпитера сила тяжести в 2,5 больше Земной. На Марсе, всего лишь 1/3, а на Луне 1/6.

Что делает силу гравитации такой слабой? Планета-гигант в основном состоит из водорода и гелия, которые он аккумулировал в самом начале образования Солнечной системы. Эти элементы были сформированы в начале Вселенной в результате Большого Взрыва. Все из-за того, что у планеты чрезвычайно низкая плотность.

Температура планеты

Снимок Вояджера 2

Самый верхний слой атмосферы, который находится на границе с космосом, имеет температуру -150 С. Но, по мере погружения в атмосферу, давление повышается и соответственно повышается температура. В ядре планеты, температура может достигать 11 700 С. Но откуда такая высокая температура? Она формируется из-за огромного количества водорода и гелия, который по мере погружения в недра планеты сжимается и разогревает ядро.

Благодаря гравитационному сжатию, планета, фактически, порождает тепло, выделяя в 2,5 раза больше энергии, чем получает от Солнца.

В нижней части облачного слоя, который состоит из водяного льда, средняя температура составляет -23 градуса по Цельсию. Над этим слоем льда находится гидросульфид аммония, со средней температурой -93 С. Выше него лежат облака из аммиачного льда, которые окрашивают атмосферу в оранжевый и желтый цвет.

Как выглядит Сатурн и какого он цвета

Даже глядя через маленький телескоп, цвет планеты виден как бледно-желтый с оттенками оранжевого. В более мощные телескопы, например, такие как Хаббл или глядя на снимки, сделанные аппаратом НАСА Кассини, можно увидеть тонкие слои облаков и бури, состоящие из смеси белого и оранжевого цветов. Но что придает Сатурну такой цвет?

Как и Юпитер, планета состоит почти полностью из водорода, с небольшим количеством гелия, а также незначительными количествами других соединений, таких как, аммиак, водяной пар и различные простейшие углеводороды.

За цвет планеты ответственен только верхний слой облаков, который в основном состоит из кристаллов аммиака, а нижний уровень облаков либо из гидросульфида аммония или воды.

Сатурн имеет полосатый узор атмосферы, примерно как у Юпитера, но эти полосы гораздо слабее и шире в районе экватора. Он также не имеет долгоживущих бурь, — ничего похожего на Большое Красное Пятно — которые часто возникают, когда на Юпитере приближается время летнего солнцестояния в Северном полушарии.

Некоторые фотографии, переданные Кассини, выглядят синими, подобно Урану. Но это, вероятно, потому, что мы видим рассеяние света с точки зрения Кассини.

Состав

Сатурн на ночном небе

Кольца вокруг планеты захватывали воображение людей в течение сотен лет. Естественным также было желание знать, из чего состоит планета. С помощью различных методов, ученые узнали, что химический состав Сатурна таков: 96% водорода, 3% гелия и 1% различных элементов, которые включают метан, аммиак, этан, водород и дейтерий. Некоторые из этих газов можно найти в его атмосфере, в жидком и расплавленном состояниях.

Состояние газов изменяется с ростом давления и температуры. На верхней границе облаков, вы столкнетесь с кристаллами аммиака, в нижней части облаков с гидросульфидом аммония и/или водой. Под облаками, атмосферное давление увеличивается, что вызывает увеличение температуры и водород переходит в жидкое состояние. По мере продвижения вглубь планеты давление и температура продолжает увеличиваться. В результате чего в ядре, водород становится металлическим, переходя в это особое агрегатное состояние. Планета, как полагают, имеют рыхлое ядро, которое помимо водорода состоит из скальных пород и некоторых металлов.

Современные космические исследования привели ко многим открытиям в системе Сатурна. Исследования начались с пролета космического аппарата Pioneer 11 в 1979 году. Эта миссия обнаружила кольцо F. В следующем году пролетел Вояджер-1, посылая на Землю детали поверхности некоторых из спутников. Он также доказал, что атмосфера на Титане не прозрачна для видимого света. В 1981 году Вояджер-2 посетил Сатурн, и обнаружил изменения в атмосфере, а также подтвердил наличие щели Максвелла и Килера, которые впервые увидел Вояджер-1.

После Вояджера-2, в систему прибыл космический аппарат Кассини-Гюйгенс, который вышел на орбиту вокруг планеты в 2004 году, более подробно о его миссии можно почитать в этой статье.

Радиация

Когда аппарат НАСА Кассини впервые прибыл к планете, он обнаружил грозы и радиационные пояса вокруг планеты. Он даже нашел новый радиационный пояс, расположенный внутри кольца планеты. Новый радиационный пояс отстоит на 139 000 км от центра Сатурна и простирается до 362 000 км.

Северное сияние на Сатурне

Видео, показывающее северное , созданное из снимков телескопа Хаббл и космического аппарата Кассини.

Благодаря наличию магнитного поля, заряженные частицы Солнца захватываются магнитосферой и формируют радиационные пояса. Эти заряженные частицы движутся вдоль линий магнитного силового поля и сталкиваются с атмосферой планеты. Механизм возникновения полярного сияния аналогичен Земному, но из-за разного состава атмосферы полярные сияния на гиганте фиолетового цвета, в отличие от зеленых на Земле.

Полярное сияние Сатурна в телескоп Хаббл

Галерея снимков полярного сияния





Ближайшие соседи

Какая ближайшая планета к Сатурну? Это зависит от того, в какой точке орбиты он находится на данный момент, а также положение других планет.

Для большей части орбиты, ближайшей планетой является . Когда Сатурн и Юпитер находятся на минимальном расстоянии друг от друга, их разделяет всего 655 000 000 км.

Когда они расположены на противоположных сторонах друг от друга, то планеты Сатурн и иногда подходят друг к другу очень близко и в этот момент их разделяет 1,43 млрд. км друг от друга.

Общие сведения

Следующие факты про планету основаны на планетарных бюллетенях НАСА.

Вес — 568,46 х 10*24 кг

Объем: 82 713 х 10*10 км3

Средний радиус: 58232 км

Средний диаметр: 116 464 км

Плотность: 0,687 г/см3

Первая космическая скорость: 35,5 км/с

Ускорение свободного падения: 10,44 м/с2

Естественных спутников: 62

Удалённость от Солнца (большая полуось орбиты): 1,43353 млрд км

Орбитальный период: 10 759.22 дней

Перигелий: 1,35255 млрд км

Афелий: 1, 5145 млрд км

Скорость движения по орбите: 9.69 км/с

Наклонение орбиты: 2,485 градусов

Эксцентриситет орбиты: 0,0565

Звездный период вращения: 10,656 часов

Период вращения вокруг оси: 10,656 часов

Осевой наклон: 26,73 °

Кто открыл: она известна с доисторических времен

Минимальное расстояние от Земли: 1,1955 млрд км

Максимальное расстояние от Земли: 1,6585 млрд км

Максимальный видимый диаметр с Земли: 20,1 угловых секунд

Минимальный видимый диаметр с Земли: 14,5 угловых секунд

Видимый блеск (максимальный): 0.43 звездные величины

История

Космический снимок выполнен телескопом Хаббл

Планета невооруженным глазом видна хорошо, так что трудно сказать, когда планета была впервые обнаружена. Почему планета называется Сатурном? Она названа в честь римского бога урожая - этот бог соответствует греческому богу Кроносу. Вот поэтому происхождение названия — римское.

Галилей

Сатурн и его кольца были загадкой, до тех пор, пока Галилей впервые не смастерил свой примитивный, но рабочий телескоп и посмотрел на планету в 1610 году. Конечно, Галилей не понимал, что он видит, и думал, что кольца были большими спутниками по обе стороны от планеты. Так было до того, как Христиан Гюйгенс не использовал лучший телескоп, чтобы увидеть, что на самом деле это не спутники, а кольца. Гюйгенс был также первым, кто открыл крупнейший спутник Титан. Несмотря на то, что видимость планеты позволяет ее наблюдать практически отовсюду, ее спутники, как и кольца видны только через телескоп.

Жан Доминик Кассини

Он обнаружил щель в кольцах, позже названную Кассини, и был первым, кто открыл 4 спутника планеты: Япет, Рею, Тетис и Диону.

Уильям Гершель

В 1789 году астроном Уильям Гершель открыл еще две луны — Мимас и Энцелад. А в 1848 году британские ученые обнаружили спутник названый Гиперион.

До полета космических аппаратов к планете мы знали о ней не так уж и много, несмотря на то, что увидеть планету можно даже невооруженным глазом. В 70-х и 80-х годах НАСА запустило космический аппарат Пионер 11, который стал первым космическим кораблем, который посетил Сатурн, пройдя в 20 000 км от облачного слоя планеты. За ним последовали запуски Вояджера-1 в 1980 году, и Вояджера-2 в августе 1981 года.

В июле 2004 года, аппарат НАСА Кассини прибыл в систему Сатурна, и составил по результатам наблюдений самое подробное описание планеты Сатурн и его системы. Кассини выполнил почти 100 облетов вокруг спутника Титана, несколько облетов множества других лун, и отправили нам тысячи изображений планеты и ее спутников. Кассини открыл 4 новых луны, новое кольцо, и обнаружил моря из жидких углеводородов на Титане.

Расширенная анимация полета Кассини в системе Сатурна

Кольца

Они состоят из ледяных частиц вращающихся вокруг планеты. Существуют несколько основных колец, которые хорошо видимы с Земли и астрономы используют специальные обозначения для каждого из колец Сатурна. Но сколько колец у планеты Сатурн на самом деле?

Кольца: вид с Кассини

Постараемся ответить на этот вопрос. Сами кольца делятся на следующие части. Две наиболее плотные части кольца обозначаются как А и В, они разделены щелью Кассини, за ними следует кольцо C. После 3-х основных колец, идут меньшие, пылевые кольца: D, G, Е, а также кольцо F, которое является самым внешним. Так сколько основных колец? Правильно - 8!

Эти три основных кольца и 5 пылевых колец и составляют основную массу. Но есть еще несколько колец, например Януса, Метона, Паллена, а также дуги кольца Анфа.

Есть и более мелкие кольца, и пробелы в различных кольцах, которые трудно сосчитать (например, щель Энке, разрыв Гюйгенс, разрыв Дауэса и многие другие). Дальнейшее наблюдение колец позволит уточнить их параметры и количество.

Исчезновения колец

Из-за наклона орбиты планеты, кольца каждые 14-15 лет, становятся видимы с ребра, а из-за того, что они очень тонкие, то фактически исчезают из поля зрения Земных наблюдателей. В 1612 году Галилей заметил, что открытые им спутники куда-то исчезли. Ситуация была настолько странной, что Галилей даже оставил наблюдения планеты (скорее всего, в результате крушения надежд!). Он обнаружил кольца (и принял их за спутники) за два года до этого и был мгновенно очарован ими.

Параметры колец

Планету иногда называют “жемчужиной Солнечной системы”, поскольку его кольцевая система выглядит как корона. Эти кольца состоят из пыли, камня и льда. Вот почему не распадаются кольца, т.к. оно не цельное, а состоит из миллиардов частиц. Часть материала в кольцевой системе, имеет размер песчинок, а некоторые объекты больше, чем высотные здания, достигая километра в поперечнике. Из чего состоят кольца? В основном из частиц льда, хотя есть и пылевые кольца. Поразительным является то, что каждое кольцо вращается с различной скоростью по отношению к планете. Средняя плотность колец планеты настолько низка, что сквозь них просвечиваются звезды.

Сатурн не единственная планета с кольцевой системой. Все газовые гиганты имеют кольца. Кольца Сатурна выделяются, потому что они являются самыми крупными и самыми яркими. Кольца имеют толщину примерно один километр, и они охватывают пространство до 482 000 км от центра планеты.

Название колец Сатурна идет в алфавитном порядке согласно порядку их обнаружения. Это делает кольца немного запутанными, перечисляя их не в порядке расположения от планеты. Ниже приведен перечень основных колец и промежутков между ними, а также расстояние от центра планеты и их ширина.

Структура колец

Обозначение

Удаление от центра планеты, км

Ширина, км

Кольцо D 67 000—74 500 7500
Кольцо C 74 500—92 000 17500
Щель Коломбо 77 800 100
Щель Максвелла 87 500 270
Щель Бонда 88 690-88 720 30
Щель Дейвса 90 200-90 220 20
Кольцо B 92 000—117 500 25 500
Деление Кассини 117 500—122 200 4700
Щель Гюйгенса 117 680 285—440
Щель Гершеля 118 183-118 285 102
Щель Рассела 118 597-118 630 33
Щель Джефриса 118 931-118 969 38
Щель Койпера 119 403-119 406 3
Щель Лапласа 119 848-120 086 238
Щель Бесселя 120 236-120 246 10
Щель Барнарда 120 305-120 318 13
Кольцо A 122 200—136 800 14600
Щель Энке 133 570 325
Щель Килера 136 530 35
Деление Роша 136 800—139 380 2580
R/2004 S1 137 630 300
R/2004 S2 138 900 300
Кольцо F 140 210 30—500
Кольцо G 165 800—173 800 8000
Кольцо E 180 000—480 000 300 000

Звуки колец

На этом замечательном видео вы слышите звуки планеты Сатурн, которые представляют собой радиоизлучение планеты, переведенное в звук. Радиоизлучение километрового диапазона, генерируются вместе с полярными сияниями на планете.

Плазменный спектрометр Кассини выполнил измерения с высоким разрешением, что позволило ученым преобразовать радиоволны в аудио путем сдвига частоты.

Возникновение колец

Как появились кольца? Самый простой ответ, почему у планеты есть кольца и из чего они сделаны, состоит в том, что планета накопила много пыли и льда на различном расстоянии от себя. Эти элементы, скорее всего, были захваченного под действием силы притяжения. Хотя некоторые считают, что они образовались в результате разрушения небольшого спутника, который слишком близко подошел к планете и попал в предел Роша, вследствие чего был разорван самой планетой на куски.

Некоторые ученые предполагают, что весь материал в кольцах представляет собой продукты столкновения спутников с астероидами или кометами. После столкновения остатки астероидов смогли избежать гравитационного притяжения планеты и образовали кольца.

Независимо от того, какая из этих версий верна, кольца являются весьма впечатляющими. Фактически Сатурн — властелин колец. После исследования колец необходимо изучить кольцевые системы других планет: Нептуна, Урана и Юпитера. Каждая из этих систем слабее, но все равно интересна по-своему.

Галерея снимков колец

Жизнь на Сатурне

Трудно представить себе менее гостеприимную планету для жизни, чем Сатурн. Планета практически полностью состоит из водорода и гелия, со следовыми количествами водяного льда в нижнем ярусе облаков. Температура в верхней части облаков может опускаться до -150 С.

По мере того, как вы спускаетесь в атмосферу, давление и температура увеличится. Если температура достаточно теплая, чтобы вода не замерзала, то давление атмосферы на этом уровне такое же, как в несколько километрах под океаном Земли.

Жизнь на спутниках планеты

Чтобы найти жизнь, ученые предлагают взглянуть на спутники планеты. Они состоят из значительного количества водяного льда, и их гравитационное взаимодействие с Сатурном, вероятно, держит их внутренности теплыми. Спутник Энцелад, как известно, имеет на поверхности гейзеры воды, которые извергается практически беспрерывно. Вполне возможно, что он имеет огромные запасы теплой воды под ледяной корой (почти как у Европы).

Другой спутник Титан имеет озера и моря жидких углеводородов и считается местом, которое в перспективе может создать жизнь. Астрономы полагают, что Титан очень похож по составу на Землю, в ее ранней истории. После того, как Солнце превратится в красного карлика (через 4-5 млрд. лет), температура на спутнике станет благоприятной для зарождения и поддержания жизни, а большое количество углеводородов, в том числе и сложных, будет первичным “бульоном”.

Положение на небе

Сатурн и шесть его спутников, любительский снимок

Сатурн на небосводе виден как довольно яркая звезда. Текущие координаты планеты лучше всего уточнять в специализированных программах-планетариях, например Stellarium, а события связанные с его покрытием или прохождение над тем ли иным регионом, а также все про планету Сатурн можно подсмотреть в статье 100 астрономических событий года. Противостояние планеты всегда предоставляет шанс посмотреть на нее в максимальных подробностях.

Ближайшие противостояния

Зная эфемериды планеты и ее звездную величину найти Сатурн на звездном небе не составит труда. Однако, если у вас мало опыта, то ее поиск может затянуться, поэтому мы советуем использовать любительские телескопы с монтировкой Go-To. Используйте телескоп с монтировкой Go-To, и вам не понадобится знать координаты планеты и где ее сейчас можно увидеть.

Полет к планете

Сколько времени займет космические путешествие к Сатурну? В зависимости от того, какой маршрут вы выберете, полет может занять разное количество времени.

Например: Пионеру-11 потребовалось шесть с половиной лет, чтобы долететь до планеты. Вояджер-1 добрался за три года и два месяца, Вояджеру-2 потребовалось четыре года, а космическому аппарату Кассини — шесть лет и девять месяцев! Космический аппарат Новые Горизонты, использовал Сатурн в качестве гравитационного трамплина на пути к Плутону, и прибыл к нему спустя два года и четыре месяца после запуска. Почему такая огромная разница во времени полета?

Первый фактор определяющий время полета

Давайте рассмотрим, запускается ли космический аппарат непосредственно к Сатурну или он попутно использует другие небесные тела в качестве рогатки?

Второй фактор определяющий время полета

Это тип двигателя космического корабля, и третий фактор, заключается в том, собираемся мы пролететь планету или выйти на ее орбиту.

С учетом этих факторов, давайте посмотрим на миссии упомянутые выше. Пионер 11 и Кассини использовали гравитационное влияние других планет, прежде чем направились к Сатурну. Эти облеты других тел прибавили лишние годы к, и без того длительной поездке. Вояджер 1 и 2 использовали всего лишь Юпитер на пути к Сатурну и прибыли к нему гораздо быстрее. У корабля Новые Горизонты было несколько явных преимуществ над всеми другими зондами. Два основных преимущества заключаются в том, что он имеет самый быстрый и самый передовой двигатель и был запущен по короткой траектории к Сатурну на своем пути к Плутону.

Этапы исследования

Панорамная фотография Сатурна, полученная 19 июля 2013 года аппаратом Кассини. В разряженном кольце слева — белая точка это Энцелад. Земля видна ниже и правее центра снимка.

В 1979 году первый космический аппарат достиг планеты-гиганта.

Пионер-11

Созданный в 1973 году, Пионер-11 совершил облет Юпитера, и использовал силу тяжести планеты, чтобы изменить свою траекторию и направиться к Сатурну. Он прибыл к нему 1 сентября 1979 года, пройдя в 22 000 км над облачным слоем планеты. Он впервые в истории провел исследования Сатурна с близкого расстояния и передал крупным планом фотографии планеты, обнаружив, ранее неизвестное кольцо.

Вояджер-1

Зонд НАСА Вояджер 1 был следующим кораблем, который посетил планету 12 ноября 1980 года. Он пролетел в 124 000 км от облачного слоя планеты, и отправил на Землю поток поистине бесценных фотографий. Вояджер-1 решили направить на облет спутника Титана, а его собрата-близнеца Вояджера -2 отправить к другим планетам-гигантам. В итоге оказалось, что аппарат хоть и передал много научной информации, но поверхность Титана не увидел, так как она непрозрачна для видимого света. Поэтому фактически кораблем пожертвовали в угоду крупнейшему спутнику, на который ученые возлагали большие надежды, а в итоге увидели оранжевый шар, без каких либо подробностей.

Вояджер-2

Вскоре после пролета Вояджера-1, Вояджер-2 прилетел в систему Сатурна и выполнил почти идентичную программу. Он достиг планеты 26 августа 1981 года. Помимо того, что он облетел планету на расстоянии 100 800 км, он близко подлетел к Энцеладу, Тетису, Гипериону, Япету, Фебае и ряду других лун. Вояджер-2, получив гравитационное ускорение от планеты, направился к Урану (успешный пролет в 1986 году) и Нептуну (успешный пролет в 1989 году), после чего он продолжил странствие к границам Солнечной системы.

Кассини-Гюйгенс


Виды Сатурна с аппарата Кассини

По-настоящему изучить планету с постоянной орбиты смог зонд НАСА Кассини-Гюйгенс, который прибыл к планете в 2004 году. В рамках своей миссии, космический корабль доставил зонд Гюйгенс на поверхность Титана.

ТОП 10 изображений Кассини









Кассини в настоящее время завершил свою главную миссию и продолжает изучать систему Сатурна и его спутников вот уже много лет. Среди его открытий стоит отметить обнаружение гейзеров на Энцеладе, морей и озер из углеводородов на Титане, новые кольца и спутники, а также данные и фотографии с поверхности Титана. Ученые планируют закончить миссию Кассини в 2017 году, из-за сокращения бюджета НАСА, выделяемого на планетарные исследования.

Будущие миссии

Ждать следующей миссии Titan Saturn System Mission (TSSM) следует не раньше 2020, а скорее гораздо позже. Используя гравитационные маневры у Земли и Венеры, этот аппарат сможет достигнуть Сатурна ориентировочно в 2029 году.

Предусмотрен четырехлетний план полета, в котором 2 года отведены на исследование самой планеты, 2 месяца на исследование поверхности Титана, в котором будет задействован посадочный модуль и 20 месяцев изучение спутника с орбиты. В этом, поистине грандиозном проекте, возможно, примет участие и Россия. Будущее участие федерального агентства Роскосмоса уже обсуждается. Пока до реализации этой миссии далеко, у нас еще есть возможность наслаждаться фантастическими снимками Кассини, которые он передает регулярно и к которым есть доступ у всех желающих уже спустя несколько дней после их передачи на Землю. Удачного вам исследования Сатурна!

Ответы на наиболее распространенные вопросы

  1. В честь кого назвали планету Сатурн? В честь римского бога плодородия.
  2. Когда была открыт Сатурн? Он известен с древнейших времен, и невозможно установить, кто первым определил, что это планета.
  3. На каком расстоянии от Солнца расположен Сатурн? Среднее расстояние от Солнца равно 1,43 млрд км, или 9,58 а.е.
  4. Как найти его на небе? Лучше всего используйте поисковые карты и специализированное программное обеспечение, например, программу Stellarium.
  5. Какие координаты плаенты? Так как это планета, то координаты ее меняются, узнать эфемериды Сатурна можно на специализированных астрономических ресурсах.

Сатурн, если считать по удалённости от Солнца, является шестой планетой, а если по величине, то второй. Это газовый гигант, масса которого превосходит массу в 95 раз. Он имеет самую низкую плотность из всех планет и даже меньшую, чем у воды. Планета Сатурн, является, пожалуй, одной из самых красивых и загадочных. Её вид поражает и манит. Сказочные кольца создают ощущение чего – то необычного, благодаря им, его невозможно спутать с другой планетой, он единственный в своём роде.

Что означает название Сатурна? Известно, что оно происходит от имени Бога Кроноса, который повелевал могучими титанами в греческой мифологии. Планета получила данное название, благодаря своим гигантским размерам и необычному виду.

Параметры планеты

Атмосфера

В атмосфере Сатурна бушуют сильные ветра. Их скорость настолько велика, что составляет около 500 км/ч, а порой, достигает и 1500 км/ч. Согласитесь, довольно неприятное явление, но с Земли (если смотреть в телескоп) они выглядят очень красиво. На планете бушуют настоящие циклоны, самым большим из которых является Большой белый овал. Он получил это название за внешний вид, и представляет из себя мощнейший антициклон, систематически появляющийся на поверхности примерно один раз в тридцать лет. Размеры его просто гигантские, и составляют около 17 тысяч километров.

Атмосфера планеты стоит в основном из водорода и гелия, имеется совсем немного немного азота. В верхних слоях наблюдаются аммиачные облака.

Имеются и такие образования, как пятна. Правда они не так заметны, как, например, у Юпитера, но всё - таки, некоторые довольно большие и достигают около 11 тыс. км. То есть, довольно внушительны. Есть и светлые пятна, они намного меньше, всего около 3 тыс. км, а так же, коричневые, размеры которых составляют 10 тыс. км.

Имеются и полосы, которые, как предполагают учёные, появились от перепада температур. Их довольно много и именно в центре полос дуют самые мощнейшие ветра.
В верхних слоях атмосферы очень холодно. Температура колеблется от –180 °С до –150 °С. Хоть это и страшный холод, но, если бы внутри планеты не было ядра, обогревающего и дающего тепло, то температура атмосферы была бы заметно ниже, ведь Солнце же далеко.

Поверхность

У Сатурна нет твёрдой поверхности, а то, что мы видим, это только верхушки облаков. Их верхний слой состоит из замёрзшего аммиака, а нижний — из аммония. Чем ближе к планете, тем плотнее и горячее водородная атмосфера.

Внутреннее строение очень схоже с таковым у Юпитера.Ученые предполагают, что в центре планеты находится большое силикатно – металлическое ядро. Так, на глубине около 30 000 км. температура составляет 10000 °С, а давление около 3 млн. атмосфер. В самом ядре, давление ещё более высокое, так же как и температура. В нём и находится источник тепла, согревающий всю планету. Сатурн выделяет больше тепла, чем получает от .

Ядро окружено водородом, находящимся в металлическом состоянии, а над ним, уже ближе к поверхности, слой жидкого молекулярного водорода, переходящего в свою газовую фазу, примыкающую к атмосфере. Магнитное поле планеты имеет уникальную особенность, которая заключается в совпадении с осью вращения планеты. У магнитосферы Сатурна симметричный вид, но радиационные полюса правильной формы и имеют пустоты.

Первым, кто увидел кольца, был великий Галилео Галилей, и было это аж в 1610 году. Уже позже, при помощи более мощного телескопа, голландский астроном Гюйгенс, предположил, что Сатурн имеет два кольца: одно тонкое и одно плоское. На самом же деле, их на много больше, и состоят они из многочисленных кусочков льда, камней, самых разных размеров, сметающих всё на своём пути. Кольца просто огромные. Самое большое из них, превосходит размеры планеты в 200 раз. По сути, это мусор, который остался от разрушенных комет, спутников и иных космических отходов.

Интересно, что кольца тоже имеют название. Они расположены в алфавитном порядке, то есть это кольцо А, В, С и так далее.

У Сатурна всего 61 спутник. Они имеют различную форму, но в большинстве своём они малых размеров. В основном представляют из себя ледяное образование и только некоторые имеют примеси горных пород. Названия многих спутников произошли от имён титанов, и их потомков, так как само название планеты происходит от Кроноса, который повелевал ими.

Самые крупные спутники планеты — Титан, Феба, Мимас, Тефия, Диона, Рея, Гиперион и Япет. Они, кроме Фебы, вращаются синхронно и постоянно обращены одной стороной относительно Сатурна. Многие исследователи предполагают, что Титан, очень похож по своему строению и некоторым другим параметрам с молодой Землёй (какой она была 4.6 млрд. лет тому назад).

Здесь и условия более благоприятны, и возможно, имеются простейшие микроорганизмы. Но пока что, подтвердить это не представляется возможным.

Путешествие на Сатурн

Если бы мы сейчас отправились на эту удивительную планету, то увидели бы завораживающую картину. Представьте себе, гигантский Сатурн, вокруг которого на огромной скорости вращаются многочисленные остатки планет, куски комет и льда, ведь именно это и представляет из себя тот самый пояс – кольцо, которое так красиво выглядит с Земли. На самом деле, всё не так романтично. А над планетой парят облака, плотно покрывающие всю поверхность. Местами, бушуют дикие ветра, проносясь на огромной скорости, которая быстрее, чем скорость звука на Земле.

Временами здесь бывают молнии, а значит, мы могли бы попасть под их воздействие, тем более опасно, что укрыться негде. В общем, Сатурн, довольно опасное место для нахождения человека, как бы надёжно он ни был защищён. Вас может унести ураган или попасть молния, тем более, не забывайте, что это газообразная планета, со всеми вытекающими отсюда последствиями.

  • Сатурн является самой разряженной планетой в . Плотность составляет меньше плотности воды. А вращение планеты настолько велико, что она сплющивается со стороны полюсов.
  • У Сатурна имеется феномен, который называется «Гигантский гексагон». Ни одна другая планета в солнечной системе не имеет этого. Что это такое? Это довольно устойчивое образование, представляющее из себя правильный шестиугольник, который окружает северный полюс планеты. Этот атмосферный феномен до сих пор ещё никто не может объяснить. Предполагается, что это головная часть вихря, основная масса которого находится в глубине водородной атмосферы. Размеры его огромны и составляют 25 тыс. километров.
  • Если бы Солнце было в форме двери, то планета Земля по сравнению с ней, была бы размером с монетку, а Сатурн как баскетбольный мяч. Таковы их размеры в сравнении.
  • Сатурн - это гигантская газообразная планета без твёрдой поверхности. То есть, то, что мы можем видеть, это не является твёрдым, а всего лишь облака.
  • Средний радиус планеты составляет 58.232 км. Но не смотря на такие большие размеры, он вращается довольно быстро.
  • На Сатурне сутки длятся 10,7 часов, это то время, которое необходимо планете для совершения одного оборота вокруг своей оси. Продолжительность года составляет 29,5 земных лет.
  • Солнечный ветер, врезаясь в атмосферу Сатурна, создает своеобразные «звуки». Если перевести их в диапазон слышимых человеком звуковых волн, получится страшноватая мелодия:

Те, кто долетел до Сатурна

Самый первый космический корабль, достигший Сатурна бы Пионер 11, и произошло данное событие в 1979 году. Он не приземлялся на саму планету, а только пролетел относительно близко, на расстоянии 22.000 км. были сделаны фотографии, которые открыли свет учёным астрономам на некоторые вопросы к космическому гиганту. Немного позже, аппарат Кассини сумел отправить зонд на его спутник – Титан. Он успешно приземлился и сделал уже более подробные снимки как самого Сатурна, так и Титана. А в 2009 году под ледяной поверхностью Энцелада был обнаружен целый океан льда.

Совсем недавно, астрономы обнаружили в атмосфере планеты полярное сияние нового типа, оно образует кольцо вокруг одного из полюсов.

Планета все ещё таит в себе много тайн и загадок, которые предстоит разгадать астрономам и учёным в будущем.

Одним из прекрасных астрономических объектов для наблюдения бесспорно считается планета с кольцами – Сатурн. С этим утверждением трудно не согласиться, если хотя бы раз на окольцованного гиганта удалось взглянуть через объектив телескопа. Однако этот объект Солнечной системы интересен не только с точки зрения эстетики.

Почему шестая планета от Солнца имеет систему колец, и почему такой яркий атрибут достался именно ей? На эти и многие вопросы ученые-астрофизики и астрономы до сих пор пытаются получить ответ.

Краткая характеристика планеты Сатурн

Как и другие газовые гиганты нашего ближнего космоса, Сатурн представляет интерес для научного сообщества. Расстояние от Земли до него варьируется в диапазоне 1,20-1,66 млрд. километров. Для того чтобы преодолеть этот огромный и длинный путь космическим аппаратам, стартовавшим с нашей планеты, потребуется чуть более двух лет. Новейший автоматический зонд «Новые горизонты» добирался до шестой планеты два года и четыре месяца. При этом следует учитывать, что движение планеты вокруг Солнца подобно орбитальному движению Земли. Другим словами, орбита Сатурна имеет форму идеального эллипса. У него третий по величине эксцентриситет орбиты, после Меркурия и Марса. Расстояние от Солнца в перигелии составляет 1 353 572 956 км, тогда как в афелии газовый гигант немного отдаляется, находясь на расстоянии 1 513 325 783 км.

Даже на таком значительном удалении от центральной звезды шестая по счету планета ведет себя довольно резво, вращаясь вокруг собственной оси с громадной скоростью 9,69 км/с. Период вращения Сатурна составляет 10 часов и 39 минут. По этому показателю он уступает только Юпитеру . Столь высокая скорость вращения приводит к тому, что планета выглядит приплюснутой с полюсов. Визуально Сатурн напоминает волчок, вращающийся с ошеломляющей скоростью, который несется в просторах космоса со скоростью 9,89 км/с, совершая полный оборот вокруг Солнца почти за 30 земных лет. С того момента как Сатурн в 1610 году был открыт Галилеем, небесное тело только 13 раз обернулось вокруг главной звезды Солнечной системы.

Выглядит планета на ночном небосклоне, как достаточно яркая точка, видимая звездная величина которой варьируется в диапазоне от +1,47 до −0,24. Особенно хорошо видны кольца Сатурна, которые обладают высоким альбедо.

Любопытно и расположение Сатурна в космосе. Ось вращения этой планеты имеет почти такое же наклонение к оси эклиптике, как и у Земли. В связи с этим на газовом гиганте присутствуют времена года.

Сатурн — это не самая большая планета Солнечной системы,а всего лишь второй по величине небесный объект в нашем ближайшем космосе после Юпитера Средний радиус планеты составляет 58,232 км., против 69 911 км. у Юпитера. При этом полярный диаметр планеты меньше экваториального значения. Масса планеты составляет 5,6846·10²⁶ кг, что в 96 раз больше массы Земли.

Ближайшие планеты к Сатурну – это его братья по планетарной группе — Юпитер и Уран. Первый относится к газовым гигантам, тогда как Уран причислен к ледяным гигантам. Для двух газовых гигантов Юпитера и Сатурна характерна огромная масса в сочетании с невысокой плотностью. Это связано с тем, что обе планеты представляют собой гигантские шарообразные сгустки сжиженного газа. Плотность Сатурна составляет 0,687 г/см³, уступая по этому показателю всем планетам Солнечной системы.

Для сравнения плотность у планет земной группы Марса , Земли, Венеры и у Меркурия составляет 3.94 г/см³, 5.515 г/см³, 5.25 г/см³ и 5.42 г/см³ соответственно.

Описание и состав атмосферы Сатурна

Поверхность планеты — понятие условное, у шестой планеты нет земной тверди. Вероятно, что поверхность — это дно водородно-гелиевого океана, где под воздействием чудовищного давления газовая смесь переходит в полужидкое и жидкое состояние. На сегодняшний момент нет технических средств, позволяющих исследовать поверхность планеты, поэтому все предположения о строении газового гиганта выглядят чисто теоретическими. Объектом изучения является атмосфера Сатурна, которая плотным одеялом окутывает планету.

Воздушная оболочка планеты в основном состоит из водорода. Именно водород и гелий являются теми химическими элементами, благодаря которым атмосфера находится в постоянном движении. Об этом свидетельствуют значительные по площади облачные образования, состоящие из аммиака. Ввиду того, что в составе воздушно-газовой смеси присутствует мельчайшие частицы серы, Сатурн со стороны имеет оранжевый окрас. Зона сплошной облачности начинается на нижней границе тропосферы — на высоте 100 км. от мнимой поверхности планеты. Температура в этой области варьируется в диапазоне 200-250⁰ Цельсия ниже нуля.

Более точные данные о составе атмосферы выглядят следующим образом:

  • водород 96%;
  • гелий 3%;
  • метан составляет всего 0,4%;
  • на аммиак приходится 0,01%;
  • молекулярный водород 0,01%;
  • 0,0007% приходится на этан.

По своей плотности и массивности облачность на Сатурне выглядит мощнее, чем на Юпитере. В нижней части атмосферы основными компонентами сатурнианской облачности являются гидросульфит аммония или вода, в различных вариациях. Наличие водяных паров в нижних частях атмосферы Сатурна, на высотах менее 100 км, допускает и температура, которая в данной области находится в пределах абсолютного нуля. Атмосферное давление в нижних частях атмосферы составляет 140 Кпа. По мере приближения к поверхности небесного тела температура и давление начинают расти. Газообразные соединения трансформируются, образуя новые формы. Из-за высокого давления водород принимает полужидкое состояние. Ориентировочно средняя температура на поверхности водородно-гелиевого океана составляет 143К.

Такое состояние воздушно-газовой оболочки стало причиной того, что Сатурн является единственной из планет Солнечной системы, которая отдает в окружающее космическое пространство больше тепла, чем получает его от нашего Светила.

Сатурн, находясь от Солнца на расстоянии в полтора миллиарда километров, получает в 100 раз меньше солнечного тепла, чем Земля.

Печка Сатурна объясняется работой механизма Кельвина-Гельмгольца. При падении температуры, снижается и давление в слоях атмосферы планеты. Небесное тело непроизвольно начинает сжиматься, превращая потенциальную энергию сжатия в тепло. Другое предположение, объясняющее интенсивное выделение Сатурном тепла, заключается в химической реакции. В результате конвекции в слоях атмосферы, происходит конденсация молекул гелия в слоях водорода, сопровождаемая выделением тепла.

Плотные облачные массы, разница температур в слоях атмосферы, способствуют тому, что Сатурн является одним из самых ветреных районов Солнечной системы. Бури и ураганы здесь на порядок сильнее и мощнее чем на Юпитере. Скорость воздушного потока в некоторых случаях достигает колоссальных значений 1800 км/ч. Тем более, сатурнианские штормы формируются стремительно. Зарождение урагана на поверхности планеты можно проследить визуально, в течение нескольких часов наблюдая за Сатурном в телескоп. Однако, вслед за быстрым зарождением, начинается длительный период буйства космической стихии.

Строение планеты и описание ядра

С ростом температуры и давления водород постепенно трансформируется в жидкое состояние. Примерно на глубине 20-30 тыс. км давление составляет 300ГПа. В таких условиях водород начинается металлизироваться. По мере углубления в недра планеты начинает увеличиваться доля соединений оксидов с водородом. Металлический водород составляет внешнюю оболочку ядра. Такое состояние водорода способствует возникновению электрических токов высокой интенсивности, образуя сильнейшее магнитное поле.

В отличие от внешних слоев Сатурна, внутренняя часть ядра представляет собой массивное образование диаметром 25 тыс. километров, состоящее из соединений кремния и металлов. Предположительно в этой области температуры достигают отметки в 11 тыс. градусов Цельсия. Масса ядра варьируется в диапазоне 9-22 масс нашей планеты.

Система спутников и кольца Сатурна

У Сатурна 62 спутника, причем большая часть из них имеет твердую поверхность и даже обладает собственной атмосферой. По своим размерам некоторые из них могут претендовать на звание планеты. Чего только стоят размеры Титана, который является одним из самых крупных спутников Солнечной системы и больше чем планета Меркурий . Это небесное тело, вращающееся вокруг Сатурна, имеет диаметр 5150 км. Спутник обладает собственной атмосферой, которая по своему составу сильно напоминает воздушную оболочку нашей планеты на ранней стадии формирования.

Ученые считают, что во всей Солнечной системе у Сатурна самая развитая система спутников. По информации, полученной с борта автоматической межпланетной станции «Кассини», Сатурн представляет собой едва ли не единственное в Солнечной системе место, где на его спутниках может быть существовать вода в жидком состоянии. На сегодняшний день исследованы только некоторые из спутников окольцованного гиганта, однако даже та информация, которая имеется, дает все основания считать эту наиболее отдаленную часть ближнего космоса пригодной для существования определенных форм жизни. В этом плане очень большой интерес для ученых-астрофизиков представляет пятый спутник — Энцелад

Главным украшением планеты, безусловно, являются его кольца. В системе принято выделять четыре главных кольца, имеющие соответствующие названия А, В, С и D. Ширина самого большого кольца В составляет 25500 км. Кольца разделяются щелями, среди которых самая большая — это деление Кассини, разграничивающая кольца А и В. По своему составу сатурнианские кольца представляют собой скопления мелких и крупных частиц водяного льда. Благодаря ледяной структуре нимбы Сатурна имеют высокое альбедо, и поэтому хорошо видны в телескоп.

В заключение

Достижения науки и техники в последние 30 лет позволили ученым более интенсивно проводить исследования далекой планеты с помощью технических средств. Вслед за первой информацией, полученной в результате полета американского космического аппарата «Pioneer 11», впервые пролетевшего вблизи газового гиганта в 1979 году, Сатурном занялись вплотную.

Миссию «Пионера» в начале 80-х годов продолжили два «Вояджера», первый и второй. Акцент в исследованиях был сделан на спутники Сатурна. В 1997 году земляне впервые получили достаточный объем информации о Сатурне и системе этой планеты благодаря миссии АМС «Кассини-Гюйгенс». В программе полета была запланирована посадка зонда «Гюйгенс» на поверхность Титана, которая была успешно осуществлена 14 января 2005 года.