РАЗВИТИЕ. Источником развития сердечной мьшючной ткани явля­ется миоэпикардиальная пластинка - часть висцерального сплаихпотома в шейном отделе зародыша. Ее клетки превращаются в миобласты, которые активно делятся митозом и дифференцируются. В цитоплазме миобластов синтезируются миофиламенты, формирующие миофибриллы. Вначале миофибриллы не имеют исчерченности и определенной ориентации в цитоплазме. В процессе дальнейшей дифференцировки принимают про­дольную ориентацию и тонкими миофиламентами прикрепляются к форми­рующимся уплотнениям сарколеммы (Z-вещество).

В результате все возрастающей упорядоченности миофиламентов мио­фибриллы приобретают поперечную исчерчениость. Образуются кардиоми- оциты. В их цитоплазме нарастает содержание органелл: митохондрий, гра нулярной ЭПС, свободных рибосом. В процессе дифференцировки кардио миоциты не сразу теряют способность к делению и продолжают размно­жаться. В некоторых клетках может отсутствовать цитотомия, что ведет к появлению двуядерных кардиомиоцитов. Развивающиеся кардиомиоциты имеют строго определенную пространственную ориентацию, выстраиваясь в виде цепочек и образуя друг с другом межклеточные контакты - вставоч­ные диски. В результате дивергентной дифференцировки кардиомиоциты превращаются в клетки трех типов: 1) рабочие, или типичные, сократи­тельные; 2) проводящие, или атипичные; 3) секреторные (эндокрин­ные). В результате терминальной дифференцировки кардиомиоциты к мо­менту рождения или в первые месяцы постнаталыюго онтогенеза теряют способность к делению. В зрелой сердечной мышечной ткани камбиальные клетки отсутствуют.

СТРОЕНИЕ. Сердечная мышечная ткань образована клетками карди-омиоцитами. Кардиомиоциты являются единственным тканевым элемен­том сердечной мышечной ткани. Они соединяются друг с другом при по­мощи вставочных дисков и образуют функциональные мышечные волокна, или функциональный симпласт, не являющийся симпластом в морфологи­ческом понятии. Функциональные волокна разветвляются и анастомози-руют боковыми поверхностями, в результате чего образуется сложная трехмерная сеть (рис. 12.15).



Кардиомиоциты имеют вытянутую прямоугольную слабоотростчатую форму. Они состоят из ядра и цитоплазмы. Многие клетки (более полови­ны у взрослого индивидуума) являются двуядерными и полиплоидными. Степень полиплоидизации различна и отражает адаптивные возможности миокарда. Ядра крупные, светлые, находятся в центре кардиомиоцитов.

Цитоплазма (саркоплазма) кардиомиоцитов обладает выраженной ок-сифилией. В ней содержится большое количество органелл и включений. Периферическую часть саркоплазмы занимают расположенные продольно исчерченные миофибриллы, построенные так же, как в скелетной мышеч­ной ткани (рис. 12.16). В отличие от миофибрилл скелетной мышечной ткани, лежащих строго изолированно, в кардиомиоцитах миофибриллы нередко сливаются друг с другом с образованием единой структуры и со­держат сократимые белки, химически отличающиеся от сократимых бел­ков миофибрилл скелетных мышц.

СИР и Т-трубочки развиты слабее, чем в скелетной мышечной ткани, что связано с автоматией сердечной мышцы и меньшим влиянием не­рвной системы. В отличие от скелетной мышечной ткани СПР и Т-трубочки образуют не триады, а диады (к Т-трубочке прилежит одна цистерна СПР). Типичные терминальные цистерны отсутствуют. СПР менее интенсивно ак­кумулирует кальций. Снаружи кардиоциты покрыты сарколеммой, состоящей из плаз-молеммы кардиомпоцита и базаль-ной мембраны снаружи. Вазальная мембрана тесно связана с межкле­точным веществом, в нес вплетают­ся коллагеновые и эластические во­локна. Базальная мембрана отсут­ствует в местах вставочных дисков. Со вставочными дисками свя­заны компоненты цитоскелета. Че­рез интегрины цитолеммы они также связаны с межклеточным ве­ществом. Вставочные диски - это место контактов двух кардио­миоцитов, комплексы межклеточ­ных контактов. Они обеспечивают как механическую, так и химичес­кую, функциональную коммуни­кацию кардиомиоцитов. В свето­вом микроскопе имеют вид тем­ных поперечных полосок (рис. 12.14 б). В электронном микроско­пе вставочные диски имеют зигза­гообразный, ступеньчатый вид или вид зубчатой линии. В них можно выделить горизонтальные и верти­кальные участки и три зоны (рис. 12.1,12.15 6).


1. Зоны десмосом и поло­сок слипания. Находятся на вер­тикальных (поперечных) участках дисков. Обеспечивают механичес­кое соединение кардиомиоцитов.

2. Зоны нексусов (щеле­вых контактов) - места переда­чи возбуждения с одной клетки на другую, обеспечивают химическую коммуникацию кардиомиоцитов. Обнаруживаются на продольных участках вставочных дисков.3. Зоны прикрепления миофибрилл. Находятся на поперечных участках вставоч­ных дисков. Служат местами прикрепления актиновых фила-ментов к сарколемме кардиоми-оцита. Это прикрепление про­исходит к Z-полоскам, обнару­живаемым на внутренней по­верхности сарколеммы и анало­гичным Z-линиям. В области вставочных дисков обнаружива­ются в большом количестве кадгерины (адгезивные моле­кулы, осуществляющие каль-цийзависимую адгезию кардио-миоцитов друг с другом).

Типы кардиомиоцитов. Кардиомиоциты имеют разные свойства в разных участках серд­ца. Так, в предсердиях они мо­гут делиться митозом, а в желу­дочках никогда не делятся. Раз­личают три тина кардиомиоци­тов, существенно отличающихся друг от друга гак строением, так и функциями: рабочие, сек­реторные, проводящие.

1. Рабочие кардиомио­циты имеют структуру, описан­ную выше.

2. Среди предсердных миоцитов есть секреторные кардиомиоциты, которые вырабатывают натрийуретический фактор (НУФ), усиливаю­щий секрецию натрия почками. Кроме этого, НУФ расслабляет гладкие ми-оциты стенки артерий и подавляет секрецию гормонов, вызывающих гипер-тензию (альдостерона и вазопрессина). Все это ведет к увеличению диуре­за и просвета артерий, снижению объема циркулирующей жидкости и в результате - к снижению артериального давления. Секреторные кардио­миоциты локализуются в основном в правом предсердии. Следует отметить, что в эмбриогенезе способностью к синтезу обладают все кардиомиоциты, но в процессе дифференцировки кардиомиоциты желудочков обратимо те-ряют эту способность, которая может восстанавливаться здесь при перенап­ряжении сердечной мышцы.


3. Значительно отличаются от рабочих кардиомиоцитов проводящие (атипичные) кардиомиоциты. Образуют проводящую систему сердца (см. "сердечно-сосудистую систему"). Они в два раза больше рабочих кардио­миоцитов. В этих клетках содержится мало миофибрилл, увеличен объем саркоплазмы, в которой выявляется значительное количество гликогена. Благодаря содержанию последнего цитоплазма атипичных кардиомиоци­тов плохо воспринимает окраску. В клетках содержится много лизосом и отсутствуют Т-трубочки. Функцией атипичных кардиомиоцитов является генерация электрических импульсов и передача их на рабочие клетки. Не­смотря на автоматизм, работа сердечной мышечной ткани строго регули­руется вегетативной нервной системой. Симпатическая нервная система учащает и усиливает, парасимпатическая - урежает и ослабляет сердеч­ные сокращения.

РЕГЕНЕРАЦИЯ СЕРДЕЧНОЙ МЫШЕЧНОЙ ТКАНИ. Физиологи­ческая регенерация. Реализуется на внутриклеточном уровне и протекает с высокой интенсивностью и скоростью, поскольку сердечная мышца несет огромную нагрузку. Еще более она возрастает при тяжелой физической работе и в патологических условиях (гипертоническая болезнь и др.). При этом происходит постоянное изнашивание компонентов цитоплазмы кар­диомиоцитов и замещение их вновь образованными. При повышенной на­грузке на сердце происходит гипертрофия (увеличение размеров) и гиперп­лазия (увеличение количества) органелл, в том числе и миофибрилл с на­растанием в последних количества саркомеров. В молодом возрасте отме­чаются также полиплоидизация кардиомиоцитов и появление двуядерных клеток. Рабочая гипертрофия миокарда характеризуется адекватным адап­тивным разрастанием его сосудистого русла. При патологиии (например, пороки сердца, также вызывающие гипертрофию кардиомиоцитов) этого не происходит, и через некоторое время из-за нарушения питания происхо­дит гибель части кардиомиоцитов с замещением их рубцовой тканью (кардиосклероз).

Репаративная регенерация. Происходит при ранениях сердечной мышцы, инфарктах миокарда и при других ситуациях. Поскольку в сердеч­ной мышечной ткани пет камбиальных клеток, то при повреждении миокар­да желудочков регенераторные и адаптивные процессы идут на внутрикле­точном уровне в соседних кардиомиоцитах: они увеличиваются в размерах и берут на себя функцию погибших клеток. На месте погибших кардиомио­цитов образуется соединительнотканный рубец. В последнее время уста­новлено, что некроз кардиомиоцитов при инфаркте миокарда захватывает только кардиомиоциты сравнительно небольшого участка зоны инфаркта и близлежащей зоны. Более значительное количество кардиомиоцитов, окру­жающих зону инфаркта, погибает путем апрптоза, и этот процесс является ведущим в гибели клеток сердечной мышцы. Поэтому лечение инфаркта ми­окарда в первую очередь должно быть направлено на подавление апоптоза кардиомиоцитов в первые сутки после наступления инфаркта.

При повреждении миокарда предсердий в небольшом объеме может осуществляться регенерация на клеточном уровне.

Стимуляция репаративной регенерации сердечной мышечной ткани. 1) Предотвращение апоптоза кардиомиоцитов назначением препаратов, улучшающих микроциркуляцию миокарда, снижающих свертывание кро­ви, ее вязкость и улучшающих реологические свойства крови. Успешная борьба с постинфарктным апоптозом кардиомиоцитов является важным условием дальнейшей успешной регенерации миокарда; 2) Назначение анаболических препаратов (витаминного комплекса, препаратов РНК и ДНК, АТФ и др.); 3) Раннее применение дозированных физических нагру­зок, комплекса упражнений лечебной физкультуры.

В последние годы в экспериментальных условиях для стимуляции ре­генерации сердечной мышечной ткани стали применять трансплантацию миосателлитоцитов скелетной мышечной ткани. Установлено, что введен­ные в миокард миосателлитоциты формируют скелетные мышечные во­локна, устанавливающие тесную не только структурную, но и функцио­нальную связь с кардиомиоцитами. Поскольку замещение дефекта мио­карда не инертной соединительной, а проявляющей сократительную ак­тивность скелетной мышечной тканью более выигрышно в функциональ­ном и даже в механическом отношении, то дальнейшая разработка этого метода может оказаться перспективной при лечении инфарктов миокарда у людей.

Организм всех животных, в том числе и человека, состоит из четырех нервной, соединительной и мышечной. О последней и пойдет речь в данной статье.

Разновидности мышечной ткани

Она бывает трех видов:

  • поперечно-полосатая;
  • гладкая;
  • сердечная.

Функции мышечных тканей разных видов несколько отличаются. Да и строение тоже.

Где находятся мышечные ткани в организме человека?

Мышечные ткани разных видов занимают различное местоположение в организме животных и человека. Так, из сердечной мускулатуры, как понятно из названия, построено сердце.

Из поперечно-полосатой мышечной ткани образуются скелетные мускулы.

Гладкие мышцы выстилают изнутри полости органов, которым необходимо сокращаться. Это, к примеру, кишечник, мочевой пузырь, матка, желудок и т.д.

Структура мышечной ткани разных видов различается. О ней поговорим подробнее дальше.

Как устроена мышечная ткань?

Она состоит из больших по размеру клеток — миоцитов. Они также еще называются волокнами. Клетки мышечной ткани обладают несколькими ядрами и большим количеством митохондрий — органоидов, отвечающих за выработку энергии.

Кроме того, строение мышечной и животных предусматривает наличие небольшого количества межклеточного вещества, содержащего коллаген, который придает мышцам эластичность.

Давайте рассмотрим разных видов по отдельности.

Структура и роль гладкой мышечной ткани

Данная ткань контролируется вегетативной нервной системой. Поэтому человек не может сокращать сознательно мышцы, построенные из гладкой ткани.

Формируется она из мезенхимы. Это разновидность эмбриональной соединительной ткани.

Сокращается данная ткань намного менее активно и быстро, чем поперечно-полосатая.

Гладкая ткань построена из миоцитов веретеновидной формы с заостренными концами. Длина данных клеток может составлять от 100 до 500 микрометров, а толщина — около 10 микрометров. Клетки данной ткани являются одноядерными. Ядро расположено в центре миоцита. Кроме того, хорошо развиты такие органоиды, как агранулярная ЭПС и митохондрии. Также в клетках гладкой мышечной ткани присутствует большое количество включений из гликогена, которые представляют собой запасы питательных веществ.

Элементом, который обеспечивает сокращение мышечной ткани данного вида, являются миофиламенты. Они могут быть построены из двух актина и миозина. Диаметр миофиламентов, которые состоят из миозина, составляет 17 нанометров, а тех, которые построены из актина — 7 нанометров. Существуют также промежуточные миофиламенты, диаметр которых составляет 10 нанометров. Ориентация миофибрилл продольная.

В состав мышечной ткани данного вида также входит из коллагена, которое обеспечивает связь между отдельными миоцитами.

Функции мышечных тканей этого вида:

  • Сфинктерная. Заключается в том, что из гладких тканей устроены круговые мышцы, регулирующие переход содержимого из одного органа в другой или из одной части органа в другую.
  • Эвакуаторная. Заключается в том, что гладкие мышцы помогают организму выводить ненужные вещества, а также принимают участие в процессе родов.
  • Создание просвета сосудов.
  • Формирование связочного аппарата. Благодаря ему многие органы, такие как, например, почки, удерживаются на своем месте.

Теперь давайте рассмотрим следующий вид мышечной ткани.

Поперечно-полосатая

Она регулируется Поэтому человек может сознательно регулировать работу мышц данного вида. Из поперечно-полосатой ткани формируется скелетная мускулатура.

Данная ткань состоит из волокон. Это клетки, которые обладают множеством ядер, расположенных ближе к плазматической мембране. Кроме того, в них находится большое количество гликогеновых включений. Хорошо развиты такие органоиды, как митохондрии. Они находятся вблизи сократительных элементов клетки. Все остальные органеллы локализуются неподалеку от ядер и развиты слабо.

Структурами, благодаря которым поперечно-полосатая ткань сокращается, являются миофибриллы. Их диаметр составляет от одного до двух микрометров. Миофибриллы занимают большую часть клетки и расположены в ее центре. Ориентация миофибрилл продольная. Они состоят из светлых и темных дисков, которые чередуются, что и создает поперечную "полосатость" ткани.

Функции мышечных тканей данного вида:

  • Обеспечивают перемещение тела в пространстве.
  • Отвечают за передвижение частей тела друг относительно друга.
  • Способны к поддержанию позы организма.
  • Участвуют в процессе регуляции температуры: чем активнее сокращаются мышцы, тем выше температура. При замерзании поперечно-полосатые мышцы могут начать сокращаться непроизвольно. Этим и объясняется дрожь в теле.
  • Выполняют защитную функцию. Особенно это касается мышц брюшного пресса, которые защищают многие внутренние органы от механических повреждений.
  • Выступают в роли депо воды и солей.

Сердечная мышечная ткань

Данная ткань похожа одновременно и на поперечно-полосатую, и на гладкую. Как и гладкая, она регулируется вегетативной нервной системой. Однако сокращается она так же активно, как и поперечно-полосатая.

Состоит она из клеток, называющихся кардиомиоцитами.

Функции мышечной ткани данного вида:

  • Она всего одна: обеспечение передвижения крови по организму.

Различают рабочие, проводящие и секреторные кардиомиоциты.

Рабочие (сократительные) кардиомиоциты. имеют цилиндрическую форму, ядра расположены в центре, а миофибриллы смещены на периферию. Миофибриллы обладают поперечной исчерченностью. отличаются высоким содержанием митохондрий.

Кроме вставочных дисков кардиомиоциты соединяются между собой с помощью десмосом, а также плотных и щелевых контактов.Каждый ряд кардиомиоцитов покрыт базальной пластинкой и прослойкой соединительной ткани, которой проходят кровеносные капилляры и нервные волокна.

Проводящие кардиомиоциты образуют атипичную мускулатуру миокарда, которая обеспечивает распространение волны сокращения. отличаются высоким содержанием гликогена и лизосом, сниженным числом митохондрий и миофибрилл. хорошо иннервированы.

Благодаря проводящей системе сердце обладает способностью к автономным сокращениям, а нервная система регулирует только их интенсивность и частоту. Исходная частота сердечных сокращений задается водителем ритма сердца, затем волна сокращения распространяется с предсердий на желудочки. В проводящую систему сердца входят синусо-предсердный узел Кис-Фляка, предсердно-желудочковый узел Ашофф-Тавара и предсердно-желудочковый пучок Гисса.

Эндокринные кардиомиоциты расположены в предсердиях. Они отличаются звездчатой формой и малым числом миофибрилл. В цитоплазме обнаруживаются гранулы, которые содержат предсердный натрийуретический пептид - регулятор улучшает условия работы миокарда при высоких нагрузках, вызывая усиленное выведение натрия и воды с мочой, а также расширяя сосуды и снижая артериальное давление.

Сердце закладывается в виде 2 симметрично расположенных сосудов мезенхимального происхождения.

Сосуды сливаются и обрастают миоэпикардиальной пластинкой.

Миокард образуется из внутренней части миоэпикардиальной пластинки

Клетки постоянно пролиферируют, наблюдается удлинение клеток, появление миофибрилл.

По мере дифференцировки формируются вставочные диски и другие типы межклеточных контактов

Из клеток мезенхимы образуются соединительнотканные прослойки между кардиомиоцитами, в которые врастают сосуды и нервы.

Регенерация миокарда при инфаркте осуществляется лишь частично. В поврежденном участке возникает рубец из соединительной ткани, а сохранившиеся поблизости кардиомиоциты делятся митозом или подвергаются гипертрофии.

25. Морфофункциональная и гистогенетическая классификации мышечных тканей « | . Локализация в организме и строение гладкой мышечной ткани

Сердечная мышечная ткань особенности строения

Источники развития сердечной поперечнополосатой мышечной ткани - симметричные участки висцерального листка спланхнотома в шейной части зародыша - так называемые миоэпикардиалъные пластинки. Из них дифференцируются также клетки мезотелия эпикарда. В ходе гистогенеза возникает 3 вида кардиомиоцитов:

1. рабочие, или типичные, или же сократительные, кардиомиоциты,

2. атипичные кардиомиоциты (сюда входят пейсмекерные, проводящие и переходные кардиомиоциты, а также

3. секреторные кардиомиоциты.

Рабочие (сократительные) кардиомиоциты образуют свои цепочки. Укорачиваясь, они обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Синусные (пейсмекерные) кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Они воспринимают управляющие сигналы от нервных волокон, в ответ на что изменяют ритм сократительной деятельности. Синусные (пейсмекерные) кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а последние - проводящим. Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее - другим проводящим кардиомиоцитам. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим.

Секреторные кардиомиоциты выполняют особую функцию. Они вырабатывают гормон - натрийуретический фактор, участвующий в процессах регуляции мочеобразования и в некоторых других процессах.

Сократительные кардиомиоциты имеют удлиненную (мкм) форму, близкую к цилиндрической. Их концы соединяются друг с другом, так что цепочки клеток составляют так называемые функциональные волокна (толщиной до 20 мкм). В области контактов клеток образуются так называемые вставочные диски. Кардиомиоциты могут ветвиться и образуют трехмерную сеть. Их поверхности покрыты базальной мембраной, в которую снаружи вплетаются ретикулярные и коллагеновые волокна. Ядро кардиомиоцита (иногда их два) овальное и лежит в центральной части клетки. У полюсов ядра сосредоточены немногочисленные органеллы общего значения. Миофибриллы слабо обособлены друг от друга, могут расщепляться. Их строение аналогично строению миофибрилл миосимпласта скелетного мышечного волокна. От поверхности плазмолеммы в глубь кардиомиоцита направлены Т-трубочки, находящиеся на уровне Z-линии. Их мембраны сближены, контактируют с мембранами гладкой эндоплазматической (т.е. саркоплазматической) сети. Петли последней вытянуты вдоль поверхности миофибрилл и имеют латеральные утолщения (L-системы), формирующие вместе с Т-трубочками триады или диады. В цитоплазме имеются включения гликогена и липидов, особенно много включений миоглобина. Механизм сокращения кардиомиоцитов такой же, как у миосимпласта.

Кардиомиоциты соединяются друг с другом своими торцевыми концами. Здесь образуются так называемые вставочные диски: эти участки выглядят как тонкие пластинки при увеличении светового микроскопа. Фактически же концы кардиомиоцитов имеют неровную поверхность, поэтому выступы одной клетки входят во впадины другой. Поперечные участки выступов соседних клеток соединены друг с другом интердигитациями и десмосомами. К каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся концом в десмоплакиновом комплексе. Таким образом, при сокращении тяга одного кардиомиоцита передается другому. Боковые поверхности выступов кардиомиоцитов объединяются нексусами (или щелевыми соединениями). Это создает между ними метаболические связи и обеспечивает синхронность сокращений.

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ - allRefs.net

Растительные и животные организмы различаются не только внешне, но и, конечно, внутренне. Однако самая главная отличительная черта образа жизни - это то, что животные способны активно передвигаться в пространстве. Обеспечивается это благодаря наличию в них особых тканей - мышечных. Их мы и рассмотрим подробнее дальше.

Животные ткани

В организме млекопитающих животных и человека выделяют 4 типа тканей, выстилающих все органы и системы, формирующих кровь и осуществляющих жизненно важные функции.

  1. Эпителиальная. Образует покровы органов, наружные стенки сосудов, выстилает слизистые оболочки, формирует серозные оболочки.
  2. Нервная. Образует все органы одноименной системы, обладает важнейшими особенностями - возбудимостью и проводимостью.
  3. Соединительная. Существует в разных проявлениях, в том числе в жидкой форме - крови. Формирует сухожилия, связки, жировые прослойки, заполняет кости.
  4. Мышечная ткань, строение и функции которой позволяют животным и человеку осуществлять самые разнообразные движения, а многим внутренним структурам - сокращаться и расширяться (сосудам и так далее).

Совокупное сочетание всех перечисленных видов обеспечивает нормальное строение и функционирование живых существ.

Мышечная ткань: классификация

Особую роль в активной жизнедеятельности человека и животных играет специализированная структура. Ее название - мышечная ткань. Строение и функции ее весьма своеобразны и интересны.

Вообще данная ткань неоднородна и имеет свою классификацию. Следует рассмотреть ее подробнее. Существуют такие разновидности мышечных тканей, как:

Каждая из них имеет свое место локализации в организме и выполняет строго определенные функции.

Строение клетки мышечной ткани

Все три разновидности мышечных тканей имеют свои особенности строения. Однако можно выделить общие закономерности устройства клетки такой структуры.

Во-первых, она удлиненной формы (иногда достигает 14 см), то есть тянется вдоль всего мышечного органа. Во-вторых, она многоядерная, так как именно в этих клетках наиболее интенсивно протекают процессы синтеза белка, образования и распада молекул АТФ.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками - актином и миозином. Именно они обеспечивают главное свойство этой структуры - сократимость. Каждая нитевидная фибрилла включает в себя полосы, в микроскоп видимые как более светлые и темные. Ими являются белковые молекулы, образующие что-то вроде тяжей. Актин формирует светлые, а миозин - темные.

Особенности мышечной ткани любого типа в том, что их клетки (миоциты) образуют целые скопления - пучки волокон, или симпласты. Каждый из них изнутри выстлан целыми скоплениями фибрилл, в то время как сама мельчайшая структура состоит из названных выше белков. Если рассмотреть образно данный механизм строения, то получается, словно матрешка, - меньшее в большем, и так до самых пучков волокон, объединенных рыхлой соединительной тканью в общую структуру - определенный тип мышечной ткани.

Внутренняя среда клетки, то есть протопласт, содержит все те же самые структурные компоненты, что и любая другая в организме. Отличие - в количестве ядер и их ориентации не в центре волокна, а в периферической части. Также в том, что деление происходит не за счет генетического материала ядра, а благодаря особым клеткам, носящим название сателлитов. Они входят в состав оболочки миоцита и активно выполняют функцию регенерации - восстановления целостности ткани.

Свойства мышечных тканей

Как и любые другие структуры, данные разновидности тканей имеют свои особенности не только в строении, но и в выполняемых функциях. Основные свойства мышечных тканей, благодаря которым они могут это делать:

Благодаря большому количеству нервных волокон, кровеносных сосудов и капилляров, питающих мышцы, они могут быстро воспринимать сигнальные импульсы. Данное свойство называется возбудимостью.

Также особенности строения мышечной ткани позволяют ей быстро реагировать на любые раздражения, посылая ответный импульс в кору головного и спинной мозга. Так проявляется свойство проводимости. Это очень важно, так как способность вовремя отреагировать на угрожающие воздействия (химического, механического, физического характера) - важное условие нормальной безопасной жизнедеятельности любого организма.

Мышечная ткань, строение и функции, которые она выполняет - все это в целом сводится к главному свойству, сократимости. Оно подразумевает произвольное (контролируемое) или непроизвольное (без осознанного управления) уменьшение или увеличение длины миоцита. Происходит это благодаря работе белковых миофибрилл (актиновых и миозиновых нитей). Они могут растягиваться и истончаться почти до невидимости, а затем снова быстро восстанавливать свою структуру.

В этом состоят особенности мышечной ткани любого типа. Так построена работа сердца человека и животных, их сосудов, глазных мышц, вращающих яблоко. Именно данное свойство обеспечивает способность к активному движению, перемещению в пространстве. Что бы сумел сделать человек, если бы его мышцы не могли сокращаться? Ничего. Поднять и опустить руку, подпрыгнуть, присесть, танцевать и бегать, выполнять различные физические упражнения - все это помогают делать только мышцы. А именно миофибриллы актиновой и миозиновой природы, образующие миоциты ткани.

Последнее свойство, о котором необходимо упомянуть, это лабильность. Она подразумевает способность ткани быстро восстанавливаться после возбуждения, приходить в абсолютную работоспособность. Лучше миоцитов это могут делать только аксоны - нервные клетки.

Строение мышечных тканей, обладание перечисленными свойствами, отличительные особенности - главные причины выполнения ими ряда важнейших функций в организмах животных и человека.

Гладкая ткань

Одна из разновидностей мышечных. Имеет мезенхимное происхождение. Устроена отлично от других. Миоциты небольшие, слегка вытянутые, напоминают утолщенные в центре волокна. Средний размер клетки составляет около 0,5 мм в длину и 10 мкм в диаметре.

Протопласт отличается отсутствием сарколеммы. Ядро одно, а вот митохондрий много. Локализация генетического материала, отделенного от цитоплазмы кариолеммой, - в центре клетки. Плазматическая мембрана устроена достаточно просто, сложных белков и липидов не наблюдается. Рядом с митохондриями и по всей цитоплазме разбросаны миофибрилльные кольца, содержащие актин и миозин в небольших количествах, однако достаточных для сокращения ткани. Эндоплазматическая сеть и комплекс Гольджи несколько упрощены и редуцированы по сравнению с другими клетками.

Гладкая мышечная ткань образована пучками миоцитов (веретенообразных клеток) описанного строения, иннервируется эфферентными и афферентными волокнами. Подчиняется управлению вегетативной нервной системы, то есть сокращается, возбуждается без осознанного контроля организма.

В некоторых органах гладкая мускулатура сформирована благодаря индивидуальным одиночным клеткам с особенной иннервацией. Хотя такое явление достаточно редко. В целом можно выделить два основных типа клеток гладкой мускулатуры:

  • секреторные миоциты, или синтетические;
  • гладкие.

Первая группа клеток малодифференцированна, содержит множество митохондрий, хорошо выраженный аппарат Гольджи. В цитоплазме явно прослеживаются пучки сократительных миофибрилл и микрофиламентов.

Вторая группа миоцитов специализируется на синтезе полисахаридов и сложных комбинативных высокомолекулярных веществах, из которых в дальнейшем строятся коллаген и эластин. Ими же вырабатывается значительная часть межклеточного вещества.

Места локализации в организме

Гладкая мышечная ткань, строение и функции, которые она выполняет, позволяют ей концентрироваться в разных органах в неодинаковом количестве. Так как иннервация не подчиняется контролю со стороны направленной деятельности человека (его сознания), то и места локализации будут соответствующие. Такие, как:

В связи с этим характер активности гладкой мышечной ткани - быстродействующий низкий.

Выполняемые функции

Строение мышечных тканей накладывает прямой отпечаток на выполняемые ими функции. Так, гладкая мускулатура нужна для следующих операций:

  • осуществление сокращения и расслабления органов;
  • сужение и расширение просвета кровеносных и лимфатических сосудов;
  • движение глаз в разных направлениях;
  • контроль над тонусом мочевого пузыря и других полых органов;
  • обеспечение реакции на действие гормонов и других химических веществ;
  • высокая пластичность и связь процессов возбуждения и сокращения.

Желчный пузырь, места впадения желудка в кишку, мочевой пузырь, лимфатические и артериальные сосуды, вены и многие другиеорганы - все они способны нормально функционировать только благодаря свойствам гладкой мускулатуры. Управление, еще раз оговоримся, строго автономное.

Поперечно-полосатая мышечная ткань

Рассмотренные выше типы мышечной ткани не подчиняются управлению со стороны сознания человека и не отвечают за его движение. Это прерогатива следующего вида волокон - поперечно-полосатых.

Сначала разберемся, за что им было дано такое название. При рассмотрении в микроскоп можно увидеть, что данные структуры имеют четко выраженную исчерченность поперек определенными тяжами - нитями белка актина и миозина, образующими миофибриллы. Это и послужило причиной для такого названия ткани.

Поперечно-мышечная ткань имеет миоциты, содержащие множество ядер и представляющие собой результат слияния нескольких клеточных структур. Такое явление обозначается терминами «симпласт» или «синцитий». Внешний вид волокон представлен длинными, вытянутыми цилиндрическими клетками, плотно соединенными между собой общим межклеточным веществом. Кстати, существует определенная ткань, которая образует эту среду для сочленения всех миоцитов. Ею обладает и гладкая мышечная. Соединительная ткань - основа межклеточного вещества, которая может быть как плотной, так и рыхлой. Она же формирует целый ряд сухожилий, при помощи которых поперечно-полосатая скелетная мускулатура крепится к костям.

Миоциты рассматриваемой ткани, кроме значительного размера, имеют еще несколько особенностей:

  • саркоплазма клеток содержит большое количество хорошо различимых микрофиламентов и миофибрилл (актин и миозин в основе);
  • данные структуры объединяются в большие группы - мышечные волокна, которые, в свою очередь, формируют непосредственно скелетные мышцы разных групп;
  • имеется множество ядер, хорошо выраженный ретикулюм и аппарат Гольджи;
  • хорошо развиты многочисленные митохондрии;
  • иннервация осуществляется под контролем соматической нервной системы, то есть осознанно;
  • утомляемость волокон высокая, однако и работоспособность тоже;
  • лабильность выше среднего уровня, быстрое восстановление после рефракции.

В теле животных и человека поперечнополосатая мускулатура имеет красный цвет. Это объясняется присутствием в волокнах миоглобина - специализированного белка. Каждый миоцит покрыт снаружи практически невидимой прозрачной оболочкой - сарколеммой.

В молодом возрасте животных и человека скелетные мышцы содержат больше плотной соединительной ткани между миоцитами. С течением времени и старением она заменяется на рыхлую и жировую, поэтому мышцы становятся дряблыми и слабыми. В целом скелетная мускулатура занимает до 75% от общей массы. Именно она составляет мясо животных, птиц, рыб, которое человек употребляет в пищу. Питательная ценность очень высокая из-за большого содержания различных белковых соединений.

Разновидностью поперечно-полосатой мускулатуры, помимо скелетной, является сердечная. Особенности ее строения выражаются в присутствии двух типов клеток: обычных миоцитов и кардиомиоцитов. Обычные имеют такое же строение, как и скелетные. Отвечают за автономное сокращение сердца и его сосудов. А вот кардиомиоциты - особые элементы. В них незначительное количество миофибрилл, а значит, актина и миозина. Это говорит о низкой способности к сокращению. Но их задача не в этом. Главная роль - выполнение функции проведения возбудимости по сердцу, осуществление ритмической автоматии.

Сердечная мышечная ткань формируется за счет многократного ветвления входящих в ее состав миоцитов и последующего объединения в общую структуру этих веточек. Еще одно отличие от поперечно-полосатой скелетной мускулатуры - в том, что сердечные клетки содержат ядра в своей центральной части. Миофибриллярные участки локализованы по периферии.

Какие органы образует?

Вся скелетная мускулатура организма - это поперечно-полосатая мышечная ткань. Таблица, отражающая места локализации данной ткани в организме, приведена ниже.

Значение для организма

Роль, которую исполняет поперечно-полосатая мускулатура, переоценить сложно. Ведь именно она отвечает за самое важное отличительное свойство растений и животных - способность к активному передвижению. Человек может совершать массу самых сложных и простых манипуляций, и все они будут зависеть от работы скелетных мышц. Многие люди занимаются тщательными тренировками своей мускулатуры, добиваются в этом большого успеха благодаря свойствам мышечных тканей.

Рассмотрим, какие еще функции выполняет поперечно-полосатая мускулатура в теле человека и животных.

  1. Отвечает за сложные мимические сокращения, выражение эмоций, внешние проявления сложных чувств.
  2. Поддерживает положение тела в пространстве.
  3. Выполняет функцию защиты органов брюшной полости (от механических воздействий).
  4. Сердечная мускулатура обеспечивает ритмические сокращения сердца.
  5. Скелетные мышцы участвуют в актах глотания, формируют голосовые связки.
  6. Регулируют движения языка.

Таким образом, можно сделать следующий вывод: мышечные ткани - важные структурные элементы любого животного организма, наделяющие его определенными уникальными способностями. Свойства и строение разных типов мускулатуры обеспечивают жизненно необходимые функции. В основе строения любой мышцы лежит миоцит - волокно, образованное из белковых нитей актина и миозина.

Что произойдет с телом, если вы уменьшите потребление сахара?

Познакомьтесь с изменениями в вашем организме, которые произойдут после отказа от избыточного сахара.

10 потрясающих женщин, родившихся мужчинами

В наше время все больше и больше людей меняют пол, чтобы соответствовать своей природе и чувствовать себя естественно. Более того, есть еще андрогинны.

6 признаков, что у вас было много прошлых жизней

Вы когда-нибудь чувствовали, что у вас «старая» душа? Может быть, вы именно тот человек, который многократно перерождался? Эти 6 убедительных признако.

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе

Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Наши предки спали не так, как мы. Что мы делаем неправильно?

В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60

Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Сердечная мышца

Продолжение

Всего 7 комментариев.

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ Биология Анатомия и гистология сельскохозяйственных животных. Вопрос 1. Особенности гистологического строения кожи у млекопитающих.

Собственно сердечная мышечная ткань по своим физиологическим свойствам занимает промежуточное положение между Схема строения. сердечной мышечной.

3. Мышечные ткани. 14. Железистый эпителий. Особенности строения секреторных эпителиоцитов. Строение сердечной мышечной ткани. Как уже отмечалось, сердечная мышечная ткань образована клетками - кардиомиоцитами.

Строение клетки мышечной ткани. Все три разновидности мышечных тканей имеют свои особенности строения. Сердечная мышечная ткань формируется за счет многократного ветвления входящих в ее состав миоцитов и последующего.

Сердечная мышечная ткань: особенности. Сложные мышцы: особенности строения. Их названия соответствуют их структуре: двух-, трех- (на фото) и четырехглавые.

→ Анатомия и физиология человека → Особенности строения мышечной ткани. Так какие же особенности делают мышечную ткань настолько незаменимой структурой для человеческого тела?

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ - раздел Сельское хозяйство, Анатомия и гистология сельскохозяйственных животных Эта Ткань Образует Один Из Слоев Стенки Сердца - Миокард. Она.

Эта ткань образует один из слоев стенки сердца - миокард. Она делится на собственно сердечную мышечную ткань и проводящую систему.

Рис. 66. Схема строения сердечной мышечной ткани:

1 - мышечное волокно; 2 - вставочные диски; 3 - ядро; 4 - прослойка рыхлой соединительной ткани; 5 - поперечный разрез мышечного волокна; а - ядро; б - пучки миофибрилл, расположенные по радиусам.

Собственно сердечная, мышечная ткань по своим физиологическим свойствам занимает промежуточное положение между гладкими мышцами внутренних органов и поперечнополосатыми (скелетными). Она сокращается быстрее гладких, но медленнее поперечнополосатых мышц, работает ритмично и мало утомляется. В связи с этим в ее строении имеется ряд своеобразных черт (рис. 66). Состоит эта ткань из отдельных мышечных клеток (миоцитов), почти прямоугольной формы, расположенных столбиком друг за другом. В целом получается структура, напоминающая поперечнополосатое волокно, разделенное на отрезки поперечными перегородками - вставочные диски, являющиеся участками плазмалеммы двух соседних клеток, соприкасающихся друг с другом. Рядом лежащие волокна соединены анастомозами, что позволяет им сокращаться одновременно. Группы мышечных волокон окружены соединительнотканными прослойками, подобными эндомизию. В центре каждой клетки 1-2 ядра овальной формы. Миофибриллы располагаются по периферии клетки и имеют поперечную исчерченность. Между миофибриллами в саркоплазме большое количество митохондрий (саркосом), чрезвычайно богатых кристами, что говорит о высокой их энергетической активности. Снаружи клетка покрыта, кроме плазмалеммы, еще и базальной мембраной. Богатство цитоплазмой и хорошо развитый трофический аппарат обеспечивают сердечной мышце непрерывность деятельности.

Проводящая система сердца состоит из бедных миофибриллами тяжей мышечной ткани, способных согласовывать работу разобщенных мышц желудочков и предсердий.

Эта тема принадлежит разделу:

Анатомия и гистология сельскохозяйственных животных

На сайте allrefs.net читайте: «Анатомия и гистология сельскохозяйственных животных»

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

1. Костная система. Скелет как система органов движения и опоры. Типы соединения костей, сращения и суставы. Относительная масса костей скелета в теле животных и мясных тутах. 2.

Для облегчения изучения строения тела животных через тело проводят несколько воображаемых плоскостей. Сагиттальная– плоскость, проведённая вертикально вдоль тела животного

Раздел анатомии, изучающий кости называют остеологией(от лат. osteon – кость, logos – учение). Скелет состоит преимущественно из костей, а также из хрящей и связок.

Кости скелета соединены между собой с разной степенью подвижности. 1 непрерывное - синартроз – сращение двух костей посредством различных тканей с образова

Вся жизнь животного связана с функцией движения. В осуществлении двигательной функции главная роль принадлежит скелетным мышцам, являющимся рабочими органами нервной системы.

Мышца имеет сухожильную головку, брюшко и сухожильный хвост. Скелетные мышцы в зависимости от выполняемой функции отличаются друг от друга соотношением мышечных пучков и соединительнотканн

К вспомогательным приспособлениям и органам мышц относят: 1. фасции – покрывают мышцы, играя роль футляров, обеспечивают наилучшие условия для движения, облегчают крово- и

1. Закономерности строения, расположения и функции внутренностей. Понятие о полостях тела. 2. Общая характеристика систем органов пищеварения, дыхания, мочеотделения и размножен

Системы внутренностей слагаются из полых, трубхообразных и компактных органов. Трубкообразные органы. Несмотря на резкие различия в строении, зависящие от функции, тру

Кровь-это специфическая жидкость, необходимая жизненная среда для всех клеток, тканей и органов многоклеточных организмов. Для поддержания обмена веществ в клетках кровь приносит и

Нервная система имеет огромное значение в жизни живых организмов, обеспечивая взаимосвязь между всеми органами тела, регулируя их функции и приспосабливая организм к изменяющимся условиям окружающе

Внутренняя секреция. Железы внутренней секреции (эндокринные) в отличие от обычных желез не имеют выводных протоков, а выделяют образующиеся в них вещества - гормоны в кровь, котор

Все млекопитающие и птицы имеют постоянную температуру тела, не зависящую от температуры окружающей среды. Способность организма поддерживать постоянную температуру тела при изменяющейся температур

Разнообразнейшее взаимодействие внешнего мира воспринимается органами чувств, благодаря которым и осуществляется связь организма с окружающей средой. Вместе с тем существуют и специфические анализа

1. Раздражение рецепторов анализатора адекватным раздражителям (палочки глаза – светом); 2. Генерация рецепторного потенциала; 3. Передача импульса на нервную клетку и генерация в

Рецепторные аппараты органов чувств обладают рядом общих свойств. 1. Высокая чувствительность к адекватным раздражителям (т.е. специфически

У млекопитающих глаза (глазные яблоки) расположены в углублении костей черепа – глазнице и имеют форму, близкую к шару. Глаз состоит из: - оптической част

Световые лучи, прежде чем попасть на фоторецепторы сетчатки, претерпевают целый ряд преломлений, т.к. проходят через роговицу, хрусталик и стекловидное тело. Преломление лучей при переходе

Человек и животное должны хорошо и четко видеть предметы, удаленные на разное расстояние. Способность глаза ясно видеть разноудаленные предметы называется аккомодацией.

Сетчатая оболочка – важная составная часть глаза, расположенная между стекловидным телом и сосудистой оболочкой. Основой ее являются опорные клетки, образующие структуру

Цветное зрение имеет большое значение в жизни животных: - улучшает видимость предметов; - увеличивает полноту представления о них; - способствует лучшей

В процессе эволюции у животных сформировался орган, воспринимающий и анализирующий звуковые колебания – слуховой анализатор. У млекопитающих слуховой аппарат делится на три

1. Звуковые колебания улавливаются ушной раковиной и передаются по наружному слуховому проходу на барабанную перепонку. 2. Барабанная перепонка начинает колебаться с частотой, соответствую

Воздушная проводимость осуществляется в диапазоне: у человека от 16 доГц (колебаний в 1 с), собаки – 38 – 80000, овцы – 20 – 20000, лошади – 1000 – 1025. Звуки человеческой речи со

Обоняние – сложный процесс восприятия запахов специальным органом. У животных обоняние играет очень важную роль в процессе поиска пищи, стойла, гнезда, полового партнера. Перифер

Вкусовой анализатор информирует животное о количестве и качестве различных веществ корма. Рецепторные клетки анализатора вкуса расположены в слизистой оболочке сосочков языка, которые имеют гриб

Сигналы о температуре окружающей среды организм получает от терморецепторов. Терморецепторы делятся на две группы: - холодочувствительные – расположены поверхностно; - теплочувств

Эта чувствительность обусловлена раздражением специальных рецепторов, расположенных в коже на некотором расстоянии друг от друга. Восприятие двух точек отдельно определяет порог тактильной чувствит

Боль – это безусловнорефлекторная защитная реакция, обеспечивающая информацию о запредельных изменениях в функции органов и тканей. Чувство боли формируется в клетках коры головног

Классификация рецепторов на экстеро-, интеро- и проприорецепторы носит скорее морфологический характер, функционально они тесно связаны между собой. Так, орган слуха функционально взаимодействует с

Кожный покров птиц имеет, как и кожный покров млекопитающих, эпидермис, основу кожи и подкожный слой. Однако в кожном покрове птиц нет потовых и сальных желез, но есть особая копчиковая железа,

Система органов дыхания птиц отличается изменением структуры некоторых органов и дополняется особыми воздухоносными мешками (рис. 21).

Половые органы самцов состоят из семенников, придатков семенников, семяпроводов и у некоторых птиц из своеобразного полового члена (рис. 23). Добавочных половых желез у птиц не

Сердце птиц четырехкамерное; отличается от сердца млекопитающих тем, что в правом желудочке нет сосочковых мышц и атриовентрикулярного клапана. Последний заменен особой мышечной пластинкой, идущей

Особенности нервной системы и органов чувств. Спинной мозг птиц в общем сходен со спинным мозгом млекопитающих, но оканчивается короткой концевой нитью. В среднем мозге вместо четверохолмия двухолм

Технологическое сырьё мясной промышленности – это различные органы тела животного. Современная перерабатывающая промышленность способна превратить в полезный продукт народного хозяйства практически

Клетка – это саморегулирующаяся элементарная, живая система, входящая в состав тканей и подчинённая высшим регуляторным системам целостного организма. Каждая к

Эндоплазматическая сеть – система анастомозирующих (связанных) друг с другом канальцев или цистерн, расположенных в глубоких слоях клетки. Диаметр пузырьков и цистерн

Этот органоид получил своё название в честь ученого К. Гольджи, который впервые в 1898 г. увидел и описал его. В клетках животных этот органоид имеет разветвлённое сетчатое строение и состои

Клетки некоторых тканей в связи с особенностями их функций, кроме указанных органелл, имеют специальные органеллы, которые обеспечивают клетке специфику её функций. Такие органеллы представляют соб

Клеточные включения – временные скопления каких-либо веществ, возникающие в некоторых клетках в процессе их жизнедеятельности. Включения имеют вид глыбок, капел

Оплодотворенная яйцеклетка в процессе своего деления (дробления) и развития превращается в сложный многоклеточный организм. В ходе развития некоторые клетки под влиянием генетически

Ткани не остаются неизменными после того, как они приобрели специфические для них черты строения. В них постоянно совершаются процессы развития и адаптации к непрерывно меняющимся условиям внешней

Эпителиальная ткань (или эпителий) развивается из всех трех зародышевых листов. Эпителий располагается у позвоночных животных и человека на поверхности тела, выстилает все полые вну

Клетки этого эпителия обладают способностью синтезировать особые вещества - секреты, состав которых неодинаков у различных желез. Свойствами секреции обладают как отдельные клетки, так и сложные мн

Опорно-трофические ткани образуют каркас (строму) органов, осуществляют трофику органа, несут защитную и опорную функции. К опорно-трофическим тканям относят: кровь, лимфу

По степени упорядоченности и преобладания тех или иных тканевых элементов различают следующие соединительные ткани: 1. Рыхлая волокнистая – распространена в организме повсеместно, с

Различают три вида хряща: гиалиновый, эластический, волокнистый. Все они произошли из мезенхимы и имеют сходное строение, общую функцию (опорную) и принимают участие в углеводном обмене. Х

Костная ткань образуется из мезенхимы и развивается двумя способами: непосредственно из мезенхимы или на месте ранее заложенного хряща. В костной ткани различают клетки и межклеточное вещество.

Мышечные ткани подразделяются на: гладкую,скелетную и сердечную поперечнополосатую. Общим признаком строения мышечных тканей является наличие в цитоплазме сократимых элементов – ми

Нервная ткань состоит из нейронов и нейроглии. Основным эмбриональным источником нервной ткани является нервная трубка, отшнуровавшаяся от эктодермы. Главной функциональной единицей нервной ткани я

Общая характеристика.К этой группе относятся ткани, способные вызывать двигательный эффект либо в отдельных органах (сердце, кишечник и т.д.), либо всего животного в пространстве.

Из гладкой мышечной ткани построен мышечный слой стенок всех полостных внутренних органов, она находится также в стенках кровеносных сосудов и в коже. Сокращается эта ткань сравнительно медленно, д

Из этого вида ткани построены вся соматическая, или скелетная, мускулатура млекопитающих, а также мышцы языка, мышцы, приводящие в движение глазное яблоко, мышцы гортани и некоторые другие. Попереч

После убоя животного обмен веществ, свойственный живому организму, прекращается. Не все органы и сложные системы организма гибнут после убоя. Многие, нормально не функционируя, вступают в особое со

Парное мясо - это исходная контрольная структура, с которой можно сравнивать все последующие изменения в мясе, подвергающемся дальнейшей технологической обработке. Микроскопический анализ

Использование в теории и практике гистологических исследований сравнительных изменений, протекающих в парном и охлажденном мясе, может способствовать интенсификации и совершенствованию режимов обра

В 1970 г Н. П. Янушкин и И. А. Лагоша установили, что при хранении охлажденного мяса большое значение имеет образование корочки подсыхания в поверхностных слоях туши и отрубов в свя

Замораживание мяса является сложным процессом. Ход его в значительной степени зависит от продолжительности периода, прошедшего после убоя животных, от температурного и топографическ

Скелетные поперечнополосатые мышечные волокна домашних птиц можно определить по ядрам, которые лежат не под сарколеммой, а в глубине саркоплазмы, и по наличию в сосудах овальных эритроцитов с ядрам

При проведении различных исследований часто необходимо знать размер мышечных волокон в разных отрубах мяса или в отдельных мускулах. Но точных сведений еще очень мало, и они не систематизированы. В

Качество мяса (нежность, вкус) в значительной степени зависит от содержания соединительной ткани в мышцах. В тончайших прослойках эндомизия между отдельными волокнами встречаются главным образом ре

Посол. При посоле обычным неподвижным способом (20%-ным рассолом) в образцах мяса (длиннейший мускул спины свиньи) поперечная и продольная исчерченность хорошо сохраняется после 6

Кожа, представляющая собой наружный покров тела животных, состоит из трех слоев - поверхностного (эпидермиса), собственно кожи (дермы) и подкожного слоя. Клетки поверхн

Кожа развивается из эктодермы и мезенхимы. Эктодерма дает начало наружному слою кожи, или эпидермису (рис. 49, а, б, в, з), а мезенхима, продуцируемая дерматомами, - в

Эпидермис представлен многослойным плоским эпителием неодинаковой толщины в разных местах; особенно значителен его пласт в безволосых местах кожи (рис. 49).

Кожный покров, снятый с животного, называют шкурой. Шку­ру, освобожденную при выделке от подкожного слоя, называют мехом, а освобожденную от эпидермиса - кожей. Основную масс

В тонкой кишке завершаются процессы пищеварения и питательные материалы всасываются в кровеносное и лимфатическое русло. Эти физиологические свойства находят свое отражение в строении тонкой кишки:

В толстых кишках пищеварительные процессы играют значительно меньшую роль, чем в тонких; здесь происходит интенсивное всасывание, главным образом воды и минеральных веществ, а также

Животноводство является важной отраслью сельского хозяйства, обеспечивающей население разнообразными продуктами питания, а легкую промышленность - сырьем. Молоко, мясо, яйц

Конституция - это совокупность анатомических и физиологических особенностей животного, связанных с характером продуктивности. В истории животноводства было немало попыток разработат

Изучая основы анатомии и физиологии животных можно прийти к выводу, что реакция животных на окружающую среду, а следовательно, их продуктивность, плодовитость, устойчивость к заболеваниям и многие

Создание животных желательного типа возможно только при учете закономерностей индивидуального развития, учете факторов, оказывающих влияние на выращивание молодняка. Индивидуальное развити

Для роста и развития сельскохозяйственных животных характерны неравномерность и периодичность. Сельскохозяйственные животные в большинстве своем относятся к высшим млекопитающим, он

Чистопородное разведение - спаривание животных одной породы применяют в племенных хозяйствах, на молочных фермах, во многих овцеводческих хозяйствах, на птицефабриках большинство жи

Современные интенсивные методы ведения животноводства рассчитаны на максимальное использование всех потенциальных возможностей животного: получение максимального количества продукции за минимальные

Мясная продуктивностьобусловлена морфологическими и физиологическими особенностями животных. Эти особенности формируются и развиваются под влиянием наследственности, условий кормле

Из всех факторов окружающей среды самое сильное влияние на продуктивность животных оказывает кормление. Из корма животное получает структурный материал для построения ткани, энергию и вещества, рег

Питательность корма - это свойство его удовлетворять природные потребности животного. Она зависит от химического состава корма. Значительную часть большинства кормов составляет вода (рис. 18).

Под питательностью кормов понимают свойство последних удовлетворять природные требования животных в пище. Оценивают питательность кормов по их химическому составу, содержанию в них

Для нормального роста животные должны обязательно получить с пищей так называемые незаменимые аминокислоты: лизин, триптофан, лейцин, изолейцин, фенилаланин, треонин, метионин, валин, аргинин. Назв

Наиболее требовательны к поступлению полноценного протеина растущие и взрослые животные с высокой продуктивностью. Недостаток некоторых аминокислот в одних кормах можно пополнить за счет д

Витамины - биологически активные органические соединения, необходимые для жизненных функций организма. Отсутствие или недостаток в кормах одного витамина вызывает у животных тяжелое заболева

В организме животных обнаружены почти все химические элементы, встречающиеся в природе. В зависимости от количества их разделяют на макроэлементы (кальций, фосфор, магний, калий, натрий, сер

ЗЕЛЕНЫЙ КОРМ Зеленый корм - что трава естественных лугов и специально возделываемая для нужд животноводства. Важное биологическое значение травы объясняется богатством протеинов, ви

Отходы молочной, мясной и рыбной промышленности содержат в своем составе много белков высокой биологической ценности, минеральных веществ и витаминов. Скармливают в основном молодня

Смесь высушенных и измельченных кормов, составленную по научно обоснованным рецептам, принято называть комбикормами. Бывают в рассыпчатом, гранулированном и брикетированном виде. Различают к

Для полноценного кормления животных необходимы минеральные корма, так называемые добавки. Поваренную соль используют для всех животных как источник натрия и хлора, которых не

Крупный рогатый скот лучше, чем другие виды животных, переваривает корма с высоким содержанием клетчатки. Благодаря синтезу аминокислот в преджелудках в результате жизнедеятельности микроорганиз

Желудок жвачных сложный, многокамерный. Он является примером эволюционного приспособления животных к потреблению и перевариванию больших количеств растительного корма. Такие животные называются

Желудочный сок – бесцветная жидкость кислой реакции (рН = 0,8-1,2), содержащая органические и неорганические вещества. Неорганические вещества Йоны Na, K, Mg, HCO

Голландская порода– это самая древняя и наиболее высокопродуктивная порода, созданная, по мнению большинства исследователей, без прилития других пород. По сообщению П. Н.

Симментальская порода. Родина симментальского скота - Швейцария. О его происхождении нет единого мнения, однако известно, что на протяжении последних нескольких веков этот скот раз

Для увеличения в стране производства мяса большое значение имеет откорм скота. При правильной организации откорма животных себестоимость мяса снижается, а мясное скотоводстве становится высокодоход

Нагул - это откорм скота на естественных пастбищных угодьях. В глубинных районах Казахстана, Сибири, Нижнего Поволжья, Закавказья, Северного Кавказа, Дальнего Востока, Урала имеются большие площади

Высокую продуктивность можно получить только от породных животных, приспособленных к определенной климатической зоне и кормовым условиям. Все породы по направлению продуктивности делят на

Показатели Продуктивность Число опоросов от 1 свиноматки в год 2,0-2,2 Многоплодие свиноматок, гол

При постановке поросенка на откорм нужно обращать внимание на его породность, здоровье и развитие. Особого внимания заслуживает состояние легких. При их поражении поросенок дышит тяжело, часто, слы

Мясной откорм - это основной вид откорма большей части подсвинков (с 3-4 до 6-8-месячного возраста по достижениикг). При мясном откорме среднесуточный прирост в начале дол

Порода. Свиньи отечественных и большинства зарубежных пород, а также их помеси, при интенсивном откорме к 6,5-8-месячному возрасту достигают живой массыкг при затрате

Все корма по влиянию на качество мяса и сала делят на три группы. Первая группа. Это зерновые корма, способствующие получению свинины высокого качества - ячмень, пшеница, рожь, горо

Выбор ее может быть разный и зависит от спроса населения на свинину разных сортов, от рыночных цен на нее и от возможности получения того или иного количества свинины в расчете на одно животное. В

Перед убоем свиней прекращают кормить за 12 часов, воду дают вволю. Убивать свинью лучше в подвешенном состоянии, без предварительного оглушения. После подвешивания острым узким ножом свинье нанося

Значительное место в мясном балансе занимает баранина. Одна из ценных ее особенностей - наименьшее содержание холестерина по сравнению с мясом других животных. Экономически

В хозяйствах, занимающихся разведением овец, год начинается с подготовки овцематок к случке. Овцы большинства пород приходят в охоту во второй половине года. Лишь овцы романовской породы способны п

Тонкорунное направление продуктивности Советский меринос(шерстно-мясная, тонкорунная). Порода имеет сложное происхождение. В ее образовании приним

В Белгородской области можно разводить овец различных пород: все будет зависеть от того, что хотят получить. Если в хозяйстве хотят получить хорошего качества баранину и белую шерсть, пригодную для

Важной отраслью продуктивного животноводства является овцеводство. По количеству пород и разнообразию продукции оно превосходит другие отрасли. Шерсть, шубные и меховые овчины были

Пастбищный период. На пастбищное содержание в нашей области овец можно переводить во второй половине апреля - начале мая. При этом в течение первых 5-7 дней перед выгоном на па

Хотя весь период суягности длится 5 месяцев, первые три месяца потребность в питательных веществах у развивающегося плода невелика, поэтому при наличии хорошей пастбищной травы дополнительной подко

Куры домашние, птицы отряда куриных, наиболее распространенный вид сельскохозяйственной птицы. Произошли от диких банкивских кур (Gallus bankiva), прирученных в Индии около 5 тыс. лет назад. Характ

К продуктам птицеводства относятся яйцо, мясо, пух, перо, а также помет, используемый как ценное удобрение. Яйцо - один из наиболее ценных пищевых продуктов. По питательности 1 яйцо

Молодняк птицы можно получить из-под наседки или путем искусственной инкубации яиц. Продолжительность насиживания яиц: куриных, утиных, индюшиных, гусиных, мускусных уток -

Успех выращивания мясных цыплят (бройлеров) существенно зависит от племенных качеств кур. В 2-месячном возрасте мясные цыплята при правильном кормлении и содержании имеют живую массу более 1,5 кг.

Гуси отличаются высокой интенсивностью роста. Задней их вес увеличивается враз и достигает 4 кг и более. С тушки 1 гуся можно снять до 300 г пера, в том числе 60 г пуха. Перо и пух гу

Корма для птицы условно подразделяют на углеводистые (все злаковые, из сочных - картофель, свекла, из технических отходов - отруби, меласса, жом); белковые (животного происхождения -

Цыплят следует кормить сразу же после того, как они обсохнут, но желательно не позднее 8-12 часов после вылупления. Слабых птенцов подкармливают с помощью пипетки смесью куриного ж

Рацион для кур должен состоять из цельного зерна и мучной смеси, состоящей из кормов растительного, животного и минерального происхождения. Взрослую птицу кормят 3-4 раза в сутки. Утром да

Кормить гусей нужно с таким расчетом, чтобы весной в период размножения они имели хорошую упитанность. Для кормления гусят в первые дни жизни готовят увлажненные мешанки из вареных яиц, зе

Домашние утки обладают хорошим аппетитом, энергичным пищеварением. Они с большим успехом используют обширные суходольные выгулы и особенно мелкие водоемы, где в большом количестве поедают различную

Весной с появлением зелени до самой поздней осени индеек следует выпасать на пастбищах. Даже зимой, когда погода благоприятная, индеек нужно выгуливать. Индейки на пастбище поедают значительное кол

Куры яичный пород очень подвижные, имеют небольшую массу, легкий костяк, плотное оперение, хорошо развитые гребень и сережки. Масса птицы не превышает обычно 1,7–1,9 кг (куры). Они хорошо кормятся

Значительно выше продуктивность отдельных линий и кроссов. Скрещивая самцов одной линии с самками другой и наоборот, получают кроссы. Результаты скрещивания проверяют на сочетаемость линий по качес

Для этого направления важны не только собственно мясная продуктивность (затраты корма на единицу продукции, скороспелость), но и повышенная яйценоскость (количество цыплят-бройлеров, полученных от

Куры яично-мясных пород всегда отличались жизнеспособностью, хорошей приспосабливаемостью к местным условиям, значительно превышающей яичные породы живой массой и массой яиц, что оправдывает некото

Пекинская.Это одна из наиболее распространен­ных мясных пород, выведенная птицеводами Китая более трехсот лет назад. Пекинские утки выносливые, хорошо переносят суровые зимы, их вп

Холмогорская.Это одна из ведущих отечественных пород гусей. По окраске оперения чаще встречаются белая и серая разновидности. Яйцекладка у гусынь начинается в возрастедней

Северокавказские.Выведены в Ставропольском крае путем скрещивания местных бронзовых индеек с широкогрудыми бронзовыми. Туловище массивное, широкое спереди, к хвосту п

Бройлер (англ. Broiler, от broil - жарить на огне), мясной цыпленок, отличающийся интенсивным р

Перед убоем птицы необходима некоторая подготовка, которая позволит предотвратить быструю порчу тушки. Прежде всего следует очистить желудочно-кишечный тракт от остатков пищи. Для этого кур, уток и

1. Хрусталева И.В., Михайлов Н.В., Шнейберг Н. И. и др. Анатомия домашних животных: Учебник Изд. 4-е, исправленное и дополненное. М.: Колос, 1994.с. 2. Вракин В.Ф., Сидорова М.В. Мо

1. Лебедева Н.А., Бобровский А.Я., Писменская В.Н., Тиняков Г.Г., Куликова В.И. Анатомия и гистология мясопромышленных животных: Учебник. М.: Легкая промыш-сть, 1985.- 368 с. 2. Алмазов И.

Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Новости и инфо для студентов
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
О Сайте

Информация в виде рефератов, конспектов, лекций, курсовых и дипломных работ имеют своего автора, которому принадлежат права. Поэтому, прежде чем использовать какую либо информацию с этого сайта, убедитесь, что этим Вы не нарушаете чье либо право.


Поперечнополосатая мышечная ткань сердечного типа входит в состав мышечной стенки сердца (миокард). Основной гистологический элемент - кардиомиоцит. Кардиомиоциты присутствуют также в проксимальной части аорты и верхней полой вены.
А. Кардиомиогенез. Миобласты происходят из клеток спланхнической мезодермы, окружающей эндокардиальную трубку (глава 10 Б I). После ряда митотических делений G,-mho6- ласты начинают синтез сократительных и вспомогательных белков и через стадию G0- миобластов дифференцируются в кардиомиоциты, приобретая вытянутую форму; в саркоплазме начинается сборка миофибрилл. В отличие от поперечнополосатой мышечной ткани скелетного типа, в кардиомиогенезе не происходит обособления камбиального резерва, а все кардиомиоциты необратимо находятся в фазе G0 клеточного цикла. Специфический фактор транскрипции (ген CATFl/SMBP2, 600502, Ilql3.2-ql3.4) экспрессируется только в развивающемся и сформировавшемся миокарде.
Б. Кардиомиоциты расположены между элементами рыхлой волокнистой соединительной ткани, содержащей многочисленные кровеносные капилляры бассейна венечных сосудов и терминальные ветвления двигательных аксонов нервных клеток вегетативного отдела нервной системы. Каждый миоцит имеет сарколемму (базальная мембрана + плазмолемма). Различают рабочие, атипичные и секреторные кардиомиоциты.

  1. Рабочие кардиомиоциты (рис. 7-11) - морфофункциональные единицы сердечной мышечной ткани - имеют цилиндрическую ветвящуюся форму диаметром около 15 мкм. Клетки содержат миофибриллы и ассоциированные с ними цистерны и трубочки саркоплазматического ретикулума (депо Ca2+), центрально расположенные одно или два ядра. Рабочие кардиомиоциты при помощи межклеточных контактов (вставочные диски) объединены в так называемые сердечные мышечные волокна - функциональный синцитий (совокупность кардиомиоцитов в пределах каждой камеры сердца).
а. Сократительный аппарат. Организация миофибрилл и саркомеров в кардиомио- цитах такая же, как и в скелетном мышечном волокне (см. I Б I, 2). Одинаков и механизм взаимодействия тонких и толстых нитей при сокращении (см. I Г 5, 6, 7).
б. Саркоплазматическая сеть. Выброс Ca2+ из саркоплазматического ретикулума регулируется через рецепторы рианодина (см. также главу 2 III А 3 б (3) (а)). Изменения мембранного потенциала открывают потенциалзависимые Са2+-каналы, в кар- диомиоцитах незначительно повышается концентрация Ca2+. Этот Ca2+ активирует рецепторы рианодина, и Ca2* выходит в цитозоль (кальций-индуцированная мобилизация Ca2+).
в. Т-трубочки в кардиомиоцитах, в отличие от скелетных мышечных волокон, проходят на уровне Z-линий. В связи с этим Т-трубочка контактирует только с одной терминальной цистерной. В результате вместо триад скелетного мышечного волокна формируются диады.
г. Митохондрии расположены параллельными рядами между миофибриллами. Их более плотные скопления наблюдают на уровне I-дисков и ядер.


Продольный
участок

Вставочный диск

¦ Эритроцит

Комплекс Г ольджи

Ядро
Эндотелиальная
клетка

. Просвет капилляра

Z-линия" Митохондрии-1

Базальная
мембрана

Миофибриллы

Рис. 7-11. Рабочий кардиомиоцит - удлинённой формы клетка. Ядро расположено центрально, вблизи ядра находятся комплекс Гольджи и гранулы гликогена. Между миофибриллами лежат многочисленные митохондрии. Вставочные диски (на врезке) служат для скрепления кардиомиоцитов и синхронизации их сокращения [из Hees H, Sinowatz F (1992) и Kopf-MaierP, Merker H-J {1989))

д. Вставочные диски. На концах контактирующих кардиомиоцитов имеются интердигитации (пальцевидные выпячивания и углубления). Вырост одной клетки плотно входит в углубление другой. На конце такого выступа (поперечный участок вставочного диска) сконцентрированы контакты двух типов: десмосомы и промежуточные. На боковой поверхности выступа (продольный участок вставочного диска) имеется множество щелевых контактов (nexus, нексус).

  1. Десмосомы обеспечивают механическое сцепление, препятствующее расхождению кардиомиоцитов.
  2. Промежуточные контакты необходимы для прикрепления тонких актиновых нитей ближайшего саркомера к сарколемме кардиомиоцита.
  3. Щелевые контакты - межклеточные ионные каналы, позволяющие возбуждению перескакивать от кардиомиоцита к кардиомиоциту. Это обстоятельство - наряду с проводящей системой сердца - позволяет синхронизировать одновременное сокращение множества кардиомиоцитов в составе функционального синцития.
е. Предсердные и желудочковые миоциты - разные популяции рабочих кардиомиоцитов. В предсердных кардиомиоцитах слабее развита система Т-трубочек, но в зоне вставочных дисков значительно больше щелевых контактов. Желудочковые кардиомиоциты крупнее, они имеют хорошо развитую систему Т-трубочек. В состав сократительного аппарата миоцитов предсердий и желудочков входят разные изоформы миозина, актина и других контрактильных белков.
  1. Атипичные кардиомиоциты. Этот устаревший термин относится к миоцитам, формирующим проводящую систему сердца (глава 10 Б 2 б (2)). Среди них различают водители ритма и проводящие миоциты.
а. Водители ритма (пейсмейкерные клетки, пейсмейкеры; рис. 7-12) - совокупность специализированных кардиомиоцитов в виде тонких волокон, окружённых рыхлой соединительной тканью. По сравнению с рабочими кардиомиоцитами они имеют меньшие размеры. В саркоплазме содержится сравнительно мало гликогена и небольшое количество миофибрилл, лежащих в основном по периферии клеток. Эти клетки имеют богатую васкуляризацию и двигательную вегетативную иннервацию. Так, в синусно- предсердном узле доля соединительнотканных элементов (включая кровеносные капилляры) в 1,5-3 раза, а нервных элементов (нейроны и двигательные нервные окончания) в 2,5-5 раз выше, чем в рабочем миокарде правого предсердия. Главное свойство водителей ритма - спонтанная деполяризация плазматической мембраны. При достижении критического значения возникает потенциал действия, распространяющийся по волокнам проводящей системы сердца и достигающий рабочих кардиомиоцитов. Главный водитель ритма - клетки синусно-предсердного узла - генерирует ритм 60-90 импульсов в минуту. Нормально активность других водителей ритма подавлена.
  1. Спонтанная генерация импульсов потенциально присуща не только водителям ритма, но и всем атипичным, а также рабочим кардиомиоцитам. Так, in vitro все кардиомиоциты способны к спонтанному сокращению.
  2. В проводящей системе сердца существует иерархия водителей ритма: чем ближе к рабочим миоцитам, тем реже спонтанный ритм.
б. Проводящие кардиомиоциты - специализированные клетки, выполняющие функцию проведения возбуждения от водителей ритма. Эти клетки образуют длинные волокна.
  1. Пучок Гйса. Кардиомиоциты этого пучка проводят возбуждение от водителей ритма к волокнам Пуркинъё, содержат относительно длинные миофибриллы, имеющие спиральный ход; мелкие митохондрии и небольшое количество гликогена. Проводящие кардиомиоциты пучка Гйса входят также в состав синусно-предсердного и предсердно-желудочкового узлов.
  2. Волокна Пуркинъё. Проводящие кардиомиоциты волокон Пуркинъё - самые крупные клетки миокарда. В них содержатся редкая неупорядоченная сеть миофибрилл, многочисленные мелкие митохондрии, большое количество гликогена. Кардиомиоциты волокон Пуркинъё не имеют Т-трубочек и не образуют вставочных дисков. Они связаны при помощи десмосом и щелевых контактов. Последние занимают значительную площадь контактирующих клеток, что обеспечивает высокую скорость проведения импульса по волокнам Пуркинъё.
  1. Секреторные кардиомиоциты. В части кардиомиоцитов предсердий (особенно правого) у полюсов ядер располагаются хорошо выраженный комплекс Гольджи и секреторные гранулы, содержащие атриопептин - гормон, регулирующий АД (глава 10 Б 2 б (3)).
В. Иннервация. На деятельность сердца - сложной авторегуляторной и регулируемой системы - оказывает влияние множество факторов, в т.ч. двигательная вегетативная

Рис. 7-12. Атипичные кардиомиоциты. А - водитель ритма синусно-предсердного узла;
Б - проводящий кардиомиоцит пучка Гйса [из Hees Н, Sinowatz F, 1992]

иннервация - парасимпатическая и симпатическая. Парасимпатическая иннервация осуществляется терминальными варикозными окончаниями аксонов блуждающего нерва, а симпатическая - окончаниями аксонов адренергических нейронов шейного верхнего, шейного среднего и звёздчатого (шейно-грудного) ганглиев. В контексте представления о сердце как о сложной авторегуляторной системе чувствительная иннервация сердца (как вегетативная, так и соматическая) должна рассматриваться как часть системы регуляции
кровотока.

  1. Двигательная вегетативная иннервация. Эффекты парасимпатической и симпатической иннервации реализуют соответственно мускариновые холинергические и
адренергические рецепторы плазмолеммы разных клеток сердца (кардиомиоциты рабочие и особенно атипические, внутрисердечные нейроны собственного нервного аппарата). Существует множество фармакологических препаратов, оказывающих непосредственное действие на названные рецепторы. Так, норадреналин, адреналин и другие адренергические препараты в зависимости от эффекта на а- и p-адренорецепторы подразделяют на активирующие (адреномиметики) и блокирующие (адреноблока- торы) агенты. м-Холинорецепторы также имеют аналогичные классы препаратов (холиномиметики и холиноблокаторы).
а. Активация симпатических нервов увеличивает частоту спонтанной деполяризации мембран водителей ритма, облегчает проведение импульса в волокнах Пуркинье и увеличивает частоту и силу сокращения типичных кардиомиоцитов.
б. Парасимпатические влияния, наоборот, уменьшают частоту генерации импульсов пейсмейкерами, снижают скорость проведения импульса в волокнах Пуркинье и уменьшают частоту сокращения рабочих кардиомиоцитов.
  1. Чувствительная иннервация
а. Спинальная. Периферические отростки чувствительных нейронов спинномозговых узлов образуют свободные и инкапсулированные нервные окончания.
б. Специализированные сенсорные структуры сердечно-сосудистой системы рассмотрены в главе 10.
  1. Внутрисердечные вегетативные нейроны (двигательные и чувствительные) могут формировать местные нейрорегуляторные механизмы.
  2. МИФ-клетки. Малая интенсивно флюоресцирующая клетка - разновидность нейронов, найдена практически во всех вегетативных ганглиях. Это небольшая (диаметр 10-20 мкм) и безотростчатая (или с небольшим числом отростков) клетка, в цитоплазме содержит множество крупных гранулярных пузырьков диаметром 50-200 нм с катехоламинами. Гранулярная эндоплазматическая сеть развита слабо и не образует скоплений, подобных тельцам Ниссля.
Г. Регенерация. При ишемической болезни сердца (ИБС), атеросклерозе коронарных сосудов, сердечной недостаточности разной этиологии (в т.ч. при артериальной гипертензии, инфаркте миокарда) наблюдаются патологические изменения кардиомиоцитов, включая их гибель.
  1. Репаративная регенерация кардиомиоцитов невозможна, т.к. они находятся в фазе G0 клеточного цикла, а аналогичные скелетномышечным клеткам-сателлитам G1- миобласты в миокарде отсутствуют. По этой причине на месте погибших кардиомиоцитов образуется соединительнотканный рубец со всеми вытекающими отсюда неблагоприятными последствиями (сердечная недостаточность) для проводящей и сократительной функций миокарда, а также для состояния кровотока.
  2. Сердечная недостаточность - нарушение способности сердца обеспечивать кровоснабжение органов в соответствии с их метаболическими потребностями.
а. Причины сердечной недостаточности - снижение сократительной способности, увеличение посленагрузки, изменения преднагрузки.
Снижение сократительной способности
(а) Инфаркт миокарда - некроз участка сердечной мышцы с потерей его способности к сокращению. Замещение поражённой части стенки желудочков соединительной тканью приводит к снижению функциональных свойств миокарда. При поражении значительной части миокарда развивается сердечная недостаточность.
(б) Врождённые и приобретённые пороки сердца приводят к перегрузке полостей сердца давлением или объёмом с развитием сердечной недостаточности.
(в) Артериальная гипертензия. Многие больные гипертонической болезнью или симптоматическими гипертензиями страдают недостаточностью кровообращения. Снижение сократительной способности миокарда характерно для стойкой тяжёлой гипертензии, быстро приводящей к развитию сердечной недостаточности.
(г) Кардиомиопатии токсические (алкоголь, кобальт, катехоламины, доксору- бицин), инфекционные, при т.н. коллагеновых болезнях, рестриктивные (ами- лоидоз и саркоидоз, идиопатические).
б. Компенсаторные механизмы при сердечной недостаточности. Феномены, вытекающие из закона Франка-Старлинга, в т.ч. гипертрофия миокарда, дилатация левого желудочка, периферическая вазоконстрикция вследствие выброса катехоламинов, активация системы ренин-ангиотензин-[альдостерон] и вазопрессина, перепрограммирование синтеза миозинов в кардиомиоцитах, увеличение секреции атриопептина, - компенсаторные механизмы, поддерживающие положительный инотропный эффект. Однако рано или поздно миокард теряет способность обеспечивать нормальный сердечный выброс.
  1. Гипертрофия кардиомиоцитов в виде увеличения массы клеток (в т.ч. их полиплоидизация) - компенсаторный механизм, приспосабливающий сердце к функционированию в патологических ситуациях.
  2. Перепрограммирование синтеза миозинов в кардиомиоцитах происходит при увеличении ОПСС для поддержания сердечного выброса, а также под влиянием повышенного содержания в крови T3 и T4 при тиреотоксикозах. Имеется несколько генов для лёгких и тяжёлых цепей сердечного миозина, различающихся по активности АТФазы, а значит, по длительности рабочего цикла (см. IГ 6) и развиваемому напряжению. Перепрограммирование миозинов (как и других сократительных белков) обеспечивает сердечный выброс на приемлемом уровне до тех пор, пока не будут исчерпаны возможности этого приспособительного механизма. При исчерпании этих возможностей развивается сердечная недостаточность - левосторонняя (гипертрофия левого желудочка с последующей его дилатацией и дистрофическими изменениями), правосторонняя (застой в малом круге кровообращения).
  3. Ренин-ангиотензин-[альдостерон], вазопрессин - мощная система вазо- констрикции.
  4. Периферическая вазоконстрикция вследствие выброса катехоламинов.
  5. Атриопептин - гормон, реализующий вазодилатацию.

Сердечная мышечная ткань формирует среднюю оболочку (миокард) предсердий и желудочков сердца и представлена двумя разновидностями рабочей и проводящей.

Рабочая мышечная ткань состоит из клеток кардиомиоцитов, важнейшей особенностью которых является наличие совершенных контактных зон. Соединяясь друг с другом, торцевыми концами они формируют структуру, сходную с мышечным волокном. На боковых поверхностях кардиомиоциты имеют ответвления. Соединяясь концами с ответвлениями соседних кардиомиоцитов они образуют анастомозы. Границами между торцами соседних кардиомиоцитов являются вставочные диски с прямыми или ступенчатыми контурами. В световом микроскопе они имеют вид поперечных темных полосок. С помощью вставочных дисков и анастомозов сформирована единая структурно-функциональная сократительная система.

При электронной микроскопии выявлено, что в области вставочных дисков одна клетка вдается в другую пальцевидными выступами, на боковых поверхностях которых имеются десмосомы, что обеспечивает высокую прочность сцепления. На концах пальцевидных выступов обнаружены щелевидные контакты, через которые нервные импульсы быстро распространяются от клетки к клетке без участия медиатора синхронизируя сокращение кардиомиоцитов.

Сердечные миоциты – это одноядерные, иногда двухядерные клетки. Ядра расположены в центре в отличие от скелетных мышечных волокон. В околоядерной зоне расположены компоненты аппарата Гольджи, митохондрии, лизосомы, гранулы гликогена.

Сократительный аппарат миоцитов, так же как и в скелетной мышечной ткани, состоит из миофибрилл, которые занимают периферическую часть клетки. Их диаметр от 1 до 3-х мкм.

Миофибриллы сходны с миофибриллами скелетной мышечной ткани. Они также построены из анизотропных и изотропных дисков, что также обуславливает поперечную исчерченность.

Плазмолемма кардиомиоцитов на уровне Z-полосок инвагинирует в глубь цитоплазмы, образуя поперечные трубочки, отличающиеся от скелетной мышечной ткани большим диаметром и наличием базальной мембраны, которая покрывает их снаружи, как и сарколемму. Волны деполяризации, идущие с плазмолеммы внутрь сердечных миоцитов, вызывают скольжение актиновых миофиламентов (протофибрилл) по отношению миозиновым, обуславливая сокращение, как и в скелетной мышечной ткани.

Т-трубочки в сердечных рабочих кардиомиоцитах образуют диады, то есть связаны с цистернами саркоплазматической сети только с одной стороны. Рабочие кардиомиоциты имеют длину 50-120 мкм, ширину 15-20 мкм. Количество миофибрилл в них меньше, чем в мышечных волокнах.

Сердечная мышечная ткань содержит много миоглобина, поэтому темно-красного цвета. В миоцитах много митохондрий и гликогена, т.е.: энергию сердечная мышечная ткань получает и при распаде АТФ, и в результате гликолиза. Таким образом, сердечная мышца работает непрерывно всю жизнь, из-за мощной энергетической оснащенности.


Интенсивность и частота сокращений сердечной мышцы регулируются нервными импульсами.

В эмбриогенезе рабочая мышечная ткань развивается из особых участков висцерального листка несегментированной мезодермы (спланхнотома). В сформировавшейся рабочей мышечной ткани сердца отсутствуют камбиальные клетки (миосателлиты), поэтому при повреждении миокарда в травмированной зоне кардиомиоциты погибают и на месте повреждения развивается волокнистая соединительная ткань.

Проводящая мышечная ткань сердца находится в составе комплекса образований синусно-предсердного узла, расположенного в устье краниальной полой вены, предсердно-желудочкового узла, лежащего в межпредсердной перегородке, предсердно-желудочкового ствола (пучка Гиса) и его разветвлений, находящихся под эндокардом межжелудочковой перегородки и в соединительно-тканных прослойках миокарда.

Все компоненты этой системы образованы атипичными клетками, специализированными либо на выработке импульса, распространяющемуся по всему сердцу и вызывающего сокращение его отделов в необходимой последовательности (ритме), либо в проведении импульса к рабочим кардиомиоцитам.

Для атипичных миоцитов характерен значительный объем цитоплазмы, в которой немногочисленные миофибриллы занимают периферическую часть и не имеют параллельной ориентации, вследствие чего этим клеткам не свойственна поперечная исчерченность. Ядра расположены в центре клеток. Цитоплазма богата гликогеном, но в ней мало митохондрий, что свидетельствует об интенсивном гликолизе и низком уровне аэробного окисления. Поэтому клетки проводящей системы более устойчивы к кислородному голоданию, чем сократительные кардиомиоциты.

В составе синусно-предсердного узла атипичные кардиомиоциты более мелкие, округлой формы. В них формируются нервные импульсы и они относятся к главным водителям ритма. Миоциты предсердно-желудочкового узла несколько крупнее, а волокна пучка Гиса (волокна Пуркинье) состоят из крупных округлых и овальных миоцитов с эксцентрично расположенным ядром. Диаметр их в 2-3 раза больше, чем рабочих кардиомиоцитов. Электронно-микроскопически выявлено, что в атипичных миацитах слаборазвита саркоплазматическая сеть, отсутствует система Т-трубочек. Клетки соединяются не только концами, но и боковыми поверхностями. Вставочные диски устроены более просто и не содержат пальцевидных соединений, десмосом и нексусов.