Какие гормоны образуются в задней доле гипофиза и для чего они необходимы? Часто встречается мнение, что задняя доля гипофиза выделяет гормоны вазопрессин и окситоцин, влияющие на многие процессы в организме. Однако, это не совсем правильно.

На самом деле, гормоны задней доли гипофиза образуются в гипоталамусе, а именно в супраоптических и суправентрикулярных ядрах, а затем по специальным путям – аксонам – поступают в нейрогипофиз.

Ранее считалось, что гормонами задней доли гипофиза являются окситоцин, вазопрессин, а также антидиуретический гормон, который считался отличным от вазопрессина. Позднее было доказано, что антидиуретический гормон, или адиуректин, и вазопрессин – одно и то же вещество.

В задний отдел гипофиза, накапливающий гормоны, они поступают по аксонным путям благодаря специфическому транспортному белку – нейрофизину. Далее в нейрогипофизе происходит депонирование гормонов и выделение их в кровь по необходимости.

Гормоны передней и задней доли гипофиза способны взаимно влиять на функции друг друга. Так, вазопрессин способствует усилению секреции некоторых тропных гормонов гипофиза, таких как соматотропин, тиреотропин, кортикотропин, а также стимулирует образование кортизола и инсулина. Важно также отметить влияние на синтез факторов свертывания – фактора Виллебранда и антигемофильного глобулина А, стимуляцию гликогенолиза в печени, а также влияние на снижение температуры тела.

Гормон, вырабатываемый задней долей гипофиза, окситоцин, особенно важен своим воздействием на мускулатуру матки, на лактацию, а также в формировании эмоционально-психических функций. Являясь нейромедиатором, у женщин он отвечает за формирование материнского инстинкта, а у мужчин – усиливает потенцию. Считается, что в чрезмерных количествах окситоцин способствует повышению раздражительности, агрессии, гневу.

Вазопрессин и окситоцин могут взаимно влиять на функции друг друга и совместно способствуют стимуляции мозговой активности.

Также задняя доля гипофиза выделяет гормоны, функции которых схожи с гипоталамическими гормонами, однако выражены в значительно меньшей степени. К ним относятся изотоцин, валитоцин, мезотоцин и некоторые другие.

Гормоны средней и задней доли гипофиза имеют большое значение на нормальное функционирование организма, не меньшее, чем гормоны аденогипофиза.

Окситоцин

Окситоцин – гормон гипофиза, который вырабатывается ядрами гипоталамуса и затем накапливается в задней доле гипофиза. Это биологически активное вещество вырабатывается как в женском, так и в мужском организме.

Функции окситоцина помимо влияния на физиологию человека, заключаются и во влиянии на его психологическое состояние и некоторые психические функции.

Считается, что этот гормон отвечает за эмоциональную привязанность, укрепление эмоциональных связей между людьми. Доказано, что чем выше концентрация окситоцина, тем более сильные привязанности формируются у человека к своему партнеру, матери, ребенку. Поэтому считается, что окситоцин – гормон привязанности. при этом окситоцин также помогает в социальной адаптации, и препараты с содержанием окситоцина используют при лечении аутизма.

Также повышение уровня окситоцина сопряжено с усиление полового возбуждения, сексуального поведения. Например, если происходят объятия, гормон окситоцин усиливает сексуальное желание партнеров, как и во время поцелуев, телесной близости. При этом повышается настроение, появляется романтический настрой. Поэтому есть еще одно предположение: окситоцин – гормон любви.

Окситоцин снижает воздействие стресса на организм. При выработке гормона в достаточном количестве улучшаются адаптационные возможности организма, уменьшается беспокойство, чувство страха, уровень тревожности. Также усиливается эмоциональная память, формируются более яркие воспоминания. Из-за этого считают, что окситоцин – гормон счастья. Также окситоцин способствует уменьшению тяги к курению, алкоголю, наркотикам. Это свойство широко используется при лечении синдрома абстиненции, в терапии наркозависимости, алкоголизма.

Однако функции окситоцина не ограничиваются только влиянием на психическую сферу. Влияние окситоцина на организм, особенно на женский, незаменимо для регуляции родовой деятельности, выделения грудного молока.

Зачем вырабатывается окситоцин (гормон), функции его в организме:

  • У женщин: при родах стимулирует сократительную активность миометрия; стимулирует сокращение матки в первые часы после родов; при грудном вскармливании стимулирует сокращение миоэпителиальных клеток молочных желез, в результате чего молоко поступает из альвеол в выводные протоки, и становится возможной лактация; вызывает лютеолиз желтого тела во втором триместре беременности; стимулирует секрецию пролактина.
  • Как гастроинтестинальный гормон: стимулирует электрическую и двигательную активность мышечных клеток тонкого кишечника.
  • Оказывает жаропонижающее действие за счет торможения секреции эндогенного пирогена в мононуклеарах.
  • Участвует в формировании чувства жажды и в регуляции пищевого поведения.
  • Предположительно является антагонистов вазопрессина.
  • Уменьшает солевой аппетит.
  • Стимулирует клеточный иммунитет.
  • Оказывает инсулиноподобное действие на жировую ткань.

Чаще всего окситоцин в виде лекарственного препарата применяется в акушерской практике. Гормон окситоцин вырабатывается и в мужском организме, однако иногда используется его искусственное введение и мужчинам. Преимущественно его используют спортсмены для более быстрого восстановления мышц после интенсивной тренировки, заживления ран, омоложения, повышения настроения. Однако избыточное количество окситоцина неблагоприятно воздействует на мужской организм – снижается половое влечение, развивается импотенция.

Как выработать гормон окситоцин естественным образом? Поскольку это гормон привязанности, любви, счастья, то его концентрация повышается при позитивных эмоциях, отдыхе, объятиях, телесном контакте с приятным человеком, общению с любимыми людьми, массаже, прикосновениях. Хорошо влияют на секрецию пролактина взаимодействия человека в социуме, подкрепленные положительными эмоциями – занятия спортом, танцами, прогулки. Большой пик выброса гормона отмечают у женщин сразу после родов и при прикладывании новорожденного к груди – это помогает забыть родовые муки и сформировать сильную привязанность к ребенку. Кстати, одним из интересных фактов является то, что окситоцин в большей степени вырабатывается ночью и поэтому чаще всего именно в ночное время у беременных появляются схватки – и тренировочные, и родовые.

Также важно знать, анализируя окситоцин, какой гормон регулирует его выработку. Основное влияние на секрецию окситоцина оказывают эстрогены. Секреция окситоцина возрастает перед овуляцией, при родах в период раскрытия шейки матки, при грудном кормлении, при половом акте. Увеличение секреции гормона происходит при повышении осмотического давления окружающей среды, а уменьшение выработки происходит при сильной боли, повышении температуры тела, при воздействии громких звуков.

Зная, на что воздействует гормон окситоцин, за что отвечает в норме, нужно знать и причины его патологического снижения:

  • в период менопаузы, особенно при патологическом течении климактерического периода;
  • при патологии щитовидной железы;
  • при хроническом стрессе;
  • вирусных инфекциях;
  • инфекционных заболеваниях нервной системы, в частности, головного мозга;
  • аутизме;
  • болезни Паркинсона;
  • наркозависимости;
  • в пожилом возрасте.

Последствия дефицита окситоцина могут быть весьма плачевны: патологическое течение родов, гипотонические послеродовые кровотечения, нарушения лактации, послеродовые депрессии и психозы, нарушение формирования материнского инстинкта и чувства привязанности к ребенку, депрессивные состояния, сексуальная дисфункция, ухудшение общего самочувствия, озлобленность, раздражительность, чувство опустошения, недоверия ко всем окружающим.

Поэтому нужно обеспечить для себя максимально комфортные условия для поддержания уровня окситоцина на должном уровне: помогут расслабляющий массаж, путешествия, положительные эмоции, прогулки, общение с приятными людьми, занятия любимым делом.

Вазопрессин

Вазопрессин или антидиуретический гормон (АДГ) - это гормон, который вырабатывается в виде прогормона в ги­поталамусе, затем переносится в нервные оконча­ния задней доли гипофиза, из которых секретируется в кровоток при соответствующей стимуляции. Данный гормон в своем составе содержит девять аминокислот, одной из которых является аргинин. Поэтому данный гормон еще называют АДГ.

За что отвечает гормон вазопрессин? Действие гормона вазопрессин основано на выполнении в организме 2 основных функций – регуляция водного обмена и влияние на артериальное давление. Антидиуретическое действие заключается в стимуляции процессов реабсорбции воды в дистальных отделах нефрона, благодаря воздействию на специфические рецепторы второго типа. В результате этого происходит уменьшение экскреции жидкости и увеличение объема циркулирующей крови. Таким образом, одним из эффектов АДГ является уменьшение количества и увеличение концентрации мочи. Также данный гормон увеличивает всасывание воды в кишечнике. Помимо этого, в несколько больших концентрациях вазопрессин способствует повышению тонуса сосудов, вызывая сужение артериол, в результате чего повышается артериальное давление. Это качество гормона чрезвычайно в адаптационных механизмах при большой кровопотере и развитии шока, когда происходит резкий значительный выброс антидиуретического гормона в кровь и сужаются сосуды. Также выделение вазопрессина усиливается при сгущении крови, уменьшении объема внутри- и внеклеточной жидкости, общем обезвоживании, падении артериального давления, активации симпато-адреналовой системы и ренинангиотензиновой системы. Помимо этого, АДГ участвует в формировании чувства жажды, питьевого поведения.

Вазопрессин и альдостерон работают вместе и влияют на обмен жидкости и солей в организме. Альдостерон и вазопрессин и их нарушение может стать причиной алкалоза, ацидоза, отеков.

Как нейропептид, вазопрессин участвует в формировании долговременной памяти, облегчает консолидацию и восстановление памяти, участвует в формировании биологических ритмов, в формировании эмоционального поведения, а также в антиноцицептивной, то есть противоболевой, системе.

При недостаточном количестве вазопрессина развивается такое заболевание, как несахарный диабет. При этом выделяется чрезмерное количество мочи с низкой плотностью. Количество выделяемой жидкости может достигать 25 литров в сутки, вызывая тяжелое обезвоживание организма. Среди причин этого заболевания рассматривают нейроинфекции, черепно-мозговые травмы, опухоли гипоталамуса, мозговые инсульты в гипоталамической области.

При чрезмерном количестве вазопрессина, напротив, экскреция мочи значительно уменьшается, вода задерживается в организме. Это заболевание называется синдром Пархона и встречается крайне редко. Таких больных беспокоят мучительные головные боли, повышенная слабость, отсутствие аппетита, тошнота и рвота, набор массы тела.

Стоит учитывать, что уровень гормона вазопрессина в положении лежа снижается, а в положении сидя и стоя - повышается. Поэтому во время взятия крови на анализ гормона вазопрессин важно учитывать положение пациента.Кроме того, уровень гормона зависит от времени суток (днем концентрация АДГ ниже, чем ночью).

Предназначение гормонов поджелудочной железы

При помощи данного органа обеспечивается эндокринная, а также экзокринная секреция. Причем второй вид секреции ферментов, которые присутствуют в пищеварительном тракте, воспроизводится основной частью поджелудочной железы. Эндокринная функция осуществляется за счет островков Лангерганса – небольших по размеру секретирующих клеток. Их количество не превышает 2% от общего объема железы. Островки состоят из определенных типов клеток. С их помощью происходит выработка следующих важных гормонов:

  • при помощи РР-клеток образуется панкреатический полипептид;
  • D-клетки необходимы для образования соматостатина;
  • В-клетки отвечают за образование инсулина;
  • А-клетки необходимы для синтезирования глюкагона.

Роль инсулина

Действие данного биологически активного вещества очень важно для нормальной жизнедеятельности всего организма. С его помощью происходит регулирование в организме уровня глюкозы. В данном процессе участвует большое количество прочих механизмов, также принимающих участие в минимизации глюкозы. Среди них можно выделить следующие:

  1. Гликолиз или процесс усиленного окисления глюкозы. Данный механизм наблюдается в клетках печени, при взаимодействии ферментов пируваткиназы, глюкокиназы, а также фосфофруктокиназы. Под воздействием инсулина происходит активизация этих веществ. При запуске усиленного расщепления глюкозы, вышеуказанные ферменты будут способствовать снижению ее концентрации.
  2. Повышение процесса проницаемости глюкозы в клеточных оболочках. В данном случае в мембранах клеток происходит активация специальных рецепторов. Причем данный эффект достигается не за счет усиления их работы, а за счет увеличения количества этих рецепторов.
  3. Глюконеогенез или подавление процесса превращения определенных веществ в глюкозу. В этом случае действие направлено на подавление инсулином некоторых ферментов. Процесс глюконеогенеза протекает в клетках печени. Там, при участии вазопрессина, ангиотензина, кортикоидных гормонов, а также глюкагона происходит процесс выработки глюкозы, продуцируемой из компонентов неуглеводного характера. В данном случае происходит не только угнетение инсулином вышеуказанных биологически активных веществ, но и одновременное снижение активности фермента печени, играющего главную роль в синтезировании глюкозы.
  4. Увеличение количества глюкозы, содержащейся в виде гликогена, достигается при помощи глюкозо-6-фосфата. Данный процесс наблюдается в мышечной ткани, а также в клетках печени.

Кроме вышеуказанных процессов, происходит активизация следующих процессов:

  1. Усиливается пролиферация клеток.
  2. Увеличивается поглощение клетками белков. Этот процесс является достаточно важным для клеток мышц, нуждающихся в аминокислотах.
  3. Усиливается процесс преобразования углеводов в жиры. В дальнейшем, инсулин будет содействовать поступлению определенных ферментов к этой жировой ткани. С их помощью будет выстраиваться подкожный жировой слой. Эти отложения могут быть сосредоточены как в подкожной клетчатке, так и на различных органах.
  4. Происходит стимулирование образования в клетках белков, а также ДНК. Под воздействием инсулина происходит замедление процесса распада данных веществ.
  5. Повышается процесс проницаемости клеточных стенок для фосфатов, магния, а также калия.

Однако наряду с вышеописанными процессами, происходят и противоположные действия:

  1. Заметно снижается уровень липолиза. При нем не происходит достаточного расщепления жиров, необходимого для дальнейшей абсорбции этих компонентов в кровь.
  2. Понижается уровень гидролиза белков. В данном случае наблюдается снижение поступления расщепленных белковых частиц в кровь.

Роль глюкагона

Это биологически активное вещество противоположно по действию инсулину. Его образование не ограничено действием А-клеток. Данный гормон способны воспроизводить также и остальные клетки, сосредоточенные в желудочно-кишечном тракте. Стоит отметить, что 40% этого вещества производится панкреасом. Под воздействием данного гормона в организме происходят следующие процессы:

  1. Формирование глюкозы из компонентов неуглеродного характера.
  2. Усиление липидного расщепления, которое происходит при сосредоточении этих соединений в адипоцитах. В данном случае увеличивается количество фермента липазы в жировых клетках, благодаря чему наблюдается последующее поступление составляющих процесса распада жира в кровь. В последующем они могут послужить запасом дополнительной энергии.
  3. Активирование процесса разложения имеющегося гликогена в мышцах, а также в клетках печени. С его помощью запускается процесс образования глюкозы.

Специалисты утверждают, что данный гормон необходим для запуска механизмов, направленных на увеличение содержания в крови глюкозы. Так как в организме происходит постоянная регуляция различных процессов, противоположное действие данному гормону осуществляет соматостатин. Под его воздействием происходит снижение выработки инсулина. Данное вещество вырабатывается не только в панкреасе, но также и в гипоталамусе. Его активное действие способствует:

  • замедленной абсорбции сахаров из продуктов питания;
  • угнетению воспроизводства ферментов пищеварения;
  • уменьшению количества глюкагона;
  • снижению активности выработки соляной кислоты, а также продукции гастрина;
  • значительному снижению объема циркулирующей крови в брюшной полости;
  • снижению скорости дальнейшего перехода содержимого желудка в кишечник.

Роль панкреатического полипептида

Это вещество, как и продуцирующие его клетки, было обнаружено специалистами в сравнительно недавнем времени. Стоит отметить, что оно вырабатывается только в поджелудочной железе. Влияние данного гормона еще до конца не изучено. Тем не менее ученые отмечают стимулирование его выработки при приеме в пищу жиров, а также глюкозы и белков. При этом введение данных веществ внутривенным путем не способствует его увеличению.

Среди его основных функций специалисты выделяют:

  • возможность угнетать действие панкреатических ферментов, участвующих в пищеварении;
  • способность к расслаблению мышц желчного пузыря;
  • умение приостанавливать выброс билирубина, желчи, а также трипсина.

Действие этого полипептида направлено на экономичное расходование пищеварительных ферментов. Данный гормон осуществляет контроль лишнего расхода желчи, которая необходима для правильного пищеварения. Поэтому можно утверждать, что поджелудочная железа, наряду с ее биологически активными веществами, оказывают огромное влияние на жизненные функции всего организма.

Сегодня расскажет о более знаменитых гормонах — кортизоле, окситоцине, мелатонине. Мы встречаемся с их действием каждый день, но как всегда — многие из них работают не совсем так, как мы предполагали.

Кортизол

Это стероидный гормон, который выделяется в коре надпочечников под воздействием адренокортикотропного гормона (АКТГ). Как и все стероиды, кортизол способен влиять на экспрессию других генов — и это его качество во многом определяет его важность.

Кортизол синтезируется в результате реакции организма на стресс, и задача гормона — аккумулировать силы организма и направить их на разрешение проблемы. У кортизола есть «младший брат» — адреналин, который также выделяется в мозговом веществе надпочечников. Адреналин обеспечивает мгновенную реакцию на стресс — повышается давление, учащается сердцебиение, расширяются зрачки. Всё это нужно для проведения быстрой реакции «бей или беги». Кортизол действует медленнее и работает на более длинные дистанции.

Под действием кортизола повышается уровень сахара в крови, подавляется работа иммунной системы (чтобы не расходовать энергию), выделяется желудочный сок. Повышенный в течение долгого времени кортизол замедляет заживление ран и может стимулировать воспалительные процессы в организме. Кортизол также снижает активность строительства костной ткани и синтеза коллагена.

Под влиянием солнечного света на гипофиз, уровень кортизола начинает повышаться незадолго до пробуждения и помогает человеку проснуться, полным сил. В течение дня кортизол помогает нам справляться с нормальным стрессом (его называют эустресс). Сюда относятся любые задачи, которые требуют нашей реакции: ответить на письмо, провести встречу, подготовить статистику. Эустресс не вредит нашему здоровью — наоборот, это необходимый уровень нагрузки.

А вот когда уровень стресса начинается зашкаливать, эустресс переходит в дистресс — стресс в его бытовом понимании. Изначально это были ситуации, угрожающие жизни, но сейчас к ним добавились любые события, которым человек придает большое значение. Это могут быть перегрузки на работе, проблемы в отношениях, неудачи, переживания и потери, а также свадьба, переезд, вручение Нобелевской премии или просто миллиона долларов — стресс это не обязательно плохие события, но любые изменения обстоятельств, которые требуют изменений от нас. Эволюционно человек подготовлен реагировать на стресс, но не находиться в нём постоянно. Если стрессовая ситуация растягивается во времени, перманентно повышенный уровень кортизола начинает отрицательно влиять на организм.

Прежде всего страдает гиппокамп, разрушаются синаптические связи, уменьшается объём мозга: эти процессы ухудшают мыслительные и креативные способности. Под действием кортизола, особенно в раннем возрасте, происходит метилирование — могут быть «выключены» некоторые гены. У детей, которые в детстве подверглись сильному стрессу или не получили достаточно материнской заботы, меняется способность обучаться — и эти изменения сохраняются на всю жизнь. Память в таком случае будет лучше удерживать негативные впечатления, поэтому обучение таких детей лучше проходит под давлением стресса, тогда как обычным детям нужна безопасная обстановка.

Также продолжительное действие кортизола приводит к ослаблению иммунитета и активации воспалительных процессов. Именно поэтому после нервной встречи или бессонной ночи на губах может появиться «простуда» — проявление вируса герпеса, носителями которого по статистике является примерно 67% населения, но который в «мирное время» себя никак не показывает. Хронический стресс приводит к раннему проявлению признаков старения — за счет того что кортизол блокирует синтез коллагена, истончает и обезвоживает кожу.

Снизить уровень кортизола помогут тёплые объятия, секс, любимая музыка, медитация, шутки и смех. Хорошо помогает как следует выспаться — причем важно не столько количество сна, сколько его качество. Если вы обидели кого-то или поругались с близкими — примирение снизит уровень кортизола до фоновых значений.

Пролактин

Это пептидный гормон, известный своим определяющим значением для лактации. За его синтез в основном отвечает гипофиз, но кроме головного мозга пролактин также синтезируют плацента, молочные железы и даже иммунная система. Уровень пролактина многократно увеличивается во время беременности, родов и, самое главное — при кормлении грудью. Прикладывание малыша к груди и его покусывание соска стимулирует выработку молозива (такой натуральный протеиновый коктейль с высоким содержанием иммуноглобулинов, который выделяют молочные железы в первые несколько дней после родов) и трансформацию молозива в молоко. Несмотря на высокий уровень пролактина во время беременности, лактация начинается только после родов, когда падает уровень прогестерона, который до этого мешал запуску «молочного завода». Также высокий уровень пролактина блокирует синтез фолликулостимулирующего гормона, необходимого для овуляции. Так регулярные кормления становятся естественным гормональным «контрацептивом».

Но на лактации действие пролактина не заканчивается: он также является гормоном стресса. Его уровень повышается в ответ на тревожные состояния, сильные боли, физические нагрузки. Пролактин обладает обезболивающим эффектом при воспалительных заболеваниях и, в отличие от кортизола, активизирует работу иммунной системы — стимулирует стволовые клетки к кроветворению и участвует в развитии кровеносных сосудов.

Уровень пролактина повышается во время плача и оргазма. Высокий уровень пролактина блокирует рецепторы дофамина D2, а дофамин, в свою очередь, блокирует секрецию пролактина: с точки зрения эволюции, кормящим матерям совсем ни к чему неуемное любопытство и тяга к изучению нового.

Окситоцин

Это олигопептидный гормон — он состоит из нескольких аминокислот. Его синтезирует отдел мозга гипоталамус, потом он выделяется в гипофизе.

У женщин окситоцин выделяется во время родов — он способствует сокращению матки на первом и втором этапе схваток. Синтетический вариант гормона даже используется для стимуляции родов. Окситоцин снижает чувствительность к боли. В послеродовой период под действием гормона останавливаются кровотечения и заживают разрывы. Уровень окситоцина многократно повышается в период лактации — здесь гормон действует вместе с пролактином. Активность рецепторов окситоцина в том числе регулируют рецепторы эстрогена.

И у женщин, и у мужчин окситоцин играет важную роль в сексуальном возбуждении. Уровень окситоцина повышают объятия (любые — не обязательно с сексуальным подтекстом), секс и оргазм. Окситоцин считается гормоном привязанности — он вызывает чувство доверия и спокойствия рядом с партнёром. Хотя в той же мере окситоцин можно назвать гормоном беспечности: он снижает восприятие сигналов тревоги и страха (но никак не влияет на причины возникновения таких сигналов).

Окситоцин — известный борец со стрессом: он блокирует выделение адренокортикотропного гормона (АКТГ) и, как следствие, кортизола (именно АКТГ дает сигнал вырабатывать кортизол). Поэтому под влиянием окситоцина человек чувствует себя в безопасности и открывается миру. От работы рецепторов окситоцина зависит, насколько каждый из нас способен испытывать эмпатию. Людям с менее активным вариантом гена OXTR будет сложнее разобраться в чувствах других и разделить переживания. Согласно исследованиям , этот механизм играет роль в развитии аутизма.

При участии окситоцина осуществляется довольно древний механизм формирования социальных связей у животных — это связано с воспитанием потомства и необходимости защиты матери в этот период. Главная роль окситоцина — в формировании взаимной связи между матерью и ребенком и между партнёрами. На основе своих отношений с матерью или любым другим человеком, который заботится о нем, ребенок формирует представления о себе и своей личности. Полученные знания и опыт помогают прогнозировать последствия действий и формируют картину мира. Также окситоцин участвует в обучении.

Вазопрессин

Вазопрессин — еще один пептидный гормон гипоталамуса. Вазопрессин также называют антидиуретическим гормоном — он регулирует водный баланс в организме: снижает обратное всасывание воды почками и удерживает жидкость в организме. Вазопрессин сокращает гладкую мускулатуру сосудов и может повышать артериальное давление. Снижение секреции вазопрессина может вызывать несахарный диабет — заболевание, при котором у пациента выделяется огромное количество жидкости (более 6 литров в сутки) и постоянная жажда.

Вазопрессин играет роль нейропептида и действует на клетки мозга. Он оказывает влияние на социальное поведение. Так, вариант гена рецептора вазопрессина AVPR1A связан с вероятностью счастливых семейных отношений у мужчин — такой вывод был сделан при сопоставлении данных генотипирования и результатов опроса. На мышах проводились опыты, которые показывали, что стимуляция рецепторов вазопрессина делает самцов более привязанным к своим самкам — они предпочитали проводить больше времени со знакомым партнёром, даже если до этого отличались полигамным поведением. Здесь нужно заметить, что у животных социальная моногамия не имеет ничего общего с сексуальной — речь идет о привязанности к партнёру, а не о полном отсутствии «внебрачных» связей. У людей действие вазопрессина как нейропептида не настолько прямолинейно.

Окситоцин и вазопрессин — паралоги: вещества, которые были созданы в результате удвоения последовательности ДНК и очень похожие друг на друга. Вазопрессин начинает синтезироваться у плода с 11 недели беременности, окситоцин — с 14 недели, и оба продолжают участвовать в развитии младенца в постнатальный период. Высокий уровень экспрессии рецепторов вазопрессина в неонатальный период может приводить к повышенной агрессии у взрослых.

Если уровень окситоцина может сильно меняться в зависимости от ситуации, то вазопрессин — гормон с меньшим диапазоном изменений, уровень которого главным образом зависит от генетики. От активности рецепторов вазопрессина и их генетического варианта зависит формирование социального поведения и устойчивых (или не очень) связей между партнёрами. Также эти рецепторы участвуют в развитии долговременной памяти и влияют на пластичность нейронов коры мозга.

Мелатонин

Закончим сегодняшний рассказ на радостной ноте — отправимся спать. Мелатонин — гормон сна — вырабатывается отделом мозга эпифизом при наступлении темноты (именно поэтому светить в глаза экраном смартфона перед сном — плохая идея). Он регулирует «внутренние часы» —циркадианные ритмы — и помогает всем системам организма перейти в режим отдыха. В течение суток наиболее высокий уровень мелатонина приходится на период с полуночи до 5 часов утра светового дня; в течение года уровень мелатонина повышается в зимнее время.

В организме мелатонину предшествуем аминокислота триптофан, которая также играет роль прекурсора серотонина. Мелатонин замедляет старение и репродуктивные функции и повышает уровень серотонина. Особую роль играет взаимодействие мелатонина с иммунной системой — действие гормона уменьшает воспаление. Мелатонин обладает антиоксидантным эффектом и защищает ДНК от повреждений.

Благодаря мелатонину восстанавливается суточный режим после смены часового пояса или ночной работы. Снижение выработки мелатонина — например, из-за яркого света или изменения распорядка дня — может вызывать бессонницу, которая повышает риск депрессии. Чтобы помочь своему организму хорошо выспаться и восстановить режим, постарайтесь спать в темноте — при выключенном свете и задернутых шторах, если вы вынуждены спать днём.

Жизнь в большом городе порой полностью состоит из стрессов, хронического недосыпа, пробок, опозданий, бессмысленных рабочих встреч и задач преувеличенной важности и срочности. В таком ритме очень сложно найти время на восстановление, поэтому мы просто начинаем воспринимать состояние хронической усталости как данность. Но природа нас к такому не готовила, и тот же кортизол не будет выделяться вечно: если постоянно находиться под давлением стресса, со временем кортизол истощается — и тогда организм вынужден реагировать на стресс другими методами.

Чтобы убедиться, что ваше здоровье соответствует вашей стрессовой нагрузке, проконсультируйтесь : возможно, вашему организму нужна поддержка. И совершенно точно нужен отдых.

Вазопрессин представляет собой белковый гормон, состоящий из 9 аминокислот, который необходим для регулирования обмена воды в теле человека, в его органах и тканях (синонимы - АДГ, антидиуретический гормон). В закодированном виде хранится на 20-й хромосоме.

Вазопрессин вырабатывается , способствует удержанию воды в организме, сокращению сосудов, повышает показатель свертываемости крови благодаря его влиянию на синтез простациклинов и простаглиндинов.

С латинского название «вазопрессин» расшифровывается путем перевода двух составляющих слов - «вазо», что значит «сосуд» и «пресс» - давление. Дословно - повышающий давление. Гормон разрушается в почках и печени примерно за 20 минут. Известно, что синтезом небольшого количества АДГ занимаются половые железы, но пока остается загадкой назначение этого процесса.

Гормон вырабатывается в следующих ядрах гипоталамуса головного мозга:

  • в паравентрикулярном, расположенном около желудочка головного мозга;
  • в супраоптическом, расположенном над зрительным нервом.

После выработки, гранулы АДГ отправляются в заднюю долю гипофиза, и там происходит их скапливание. По телу гормон распространяется при помощи спинно-мозговой жидкости, в которую он попадает в самом минимальном количестве. Регулированием выработки АДГ занимается гипофиз, который контролирует его запасы и уровень в крови.

Вазопрессин вырабатывается по следующим причинам:

  • повышение содержания натрия в крови;
  • слабое наполнение предсердий сердца;
  • сниженный показатель уровня артериального давления;
  • сниженный показатель содержания глюкозы в крови;
  • испытываемые чувства страха, боли, стресса или полового возбуждения;
  • рвота;
  • тошнота.

Функции антидиуретического гормона

АДГ выполняет следующие биологические функции для организма:

  • Повышает показатель процесса обратно всасывания воды.
  • Снижает концентрацию натрия в крови.
  • Увеличивает объем крови в сосудах.
  • Способствует повышению объема воды в органах и тканях.
  • Оказывает влияние на тонус гладких мышечных волокон, тем самым повышая тонус артерий и капилляров, и, как следствие, артериальное давление.
  • Участвует в интеллектуальных процессах, протекающих в мозге (отвечает за память и способность к обучению).
  • Способствует формированию определенных форм социального поведения (контролирует агрессию, влияет на показатели и аспекты семейной жизни и родительского поведения).
  • Оказывает непосредственное воздействие на центр жажды головного мозга.
  • Обладает кровоостанавливающим действием.
  • Оказывает влияние на процесс выведения жидкости из почек.

Последствия недостатка вазопрессина в крови

Недостаток АДГ сказывается на способности захвата жидкости в почечных каналах. Следствием этого является развитие сахарного диабета. Одними из основных первых признаков дефицита гормона являются чувства сухости во рту, постоянной не проходящей жажды, пересыхания слизистых оболочек.

Недостаток антидиуретического гормона становится причиной развития тяжелой стадии обезвоживания организма, потерей веса, пониженным артериальным давлением и связанными с этим чувством усталости, головокружением. Нервная система человека постепенно разрушается.

Уровень вазопрессина гормона может быть определен только в лабораторных условиях на основании проб мочи и крови. Часто причиной его снижения в крови являются генетические нарушения и предрасположенности к заболеванию.

Выделяют следующие факторы повышенного уровня АДГ:

  • холод;
  • воздействие отравляющего углекислого газа;
  • нарушения в работе гипофиза, прекращение его функционирования;
  • употребление в день более 2 л жидкости, в результате чего происходит первичная полидипсия.

Причины, по которым врач может назначить анализ на выявление уровня АДГ в крови следующие:

  • резкое повышение жажды;
  • полное отсутствие чувства жажды;
  • выделение постоянного большого объема мочи;
  • наличие изменений в показателях минералограммы;
  • постоянное нахождение артериального давления на низком уровне;
  • подозрение на образование опухолей в участках головного мозга;
  • низкий удельный вес мочи;
  • частые позывы к мочеиспусканию;
  • судороги, которые могут развиваться на фоне обезвоживания;
  • повышенная усталость, утомляемость;
  • - нарушения сознания;
  • состояние комы.

Дефицит АДГ может развиваться из-за наличия растущих опухолей головного мозга, которые оказывают сдавливающее воздействие на гипофиз и гипоталамус. Больному в этом случае можно помочь только хирургическим методом.

Последствия избыточной секреции АДГ

Избыток гормона негативно сказывается на здоровье организма, приводя к его водной интоксикации. Первыми признаками переизбытка вазопрессина являются:

  • резкое увеличение массы тела, не связанное с каким-либо другими причинами;
  • головная боль;
  • тошнота;
  • пропавший аппетит;
  • малый объем выделяемой мочи;
  • повышенная слабость и утомляемость;
  • судороги.

Вазопрессин и его повышенное содержание при отсутствии лечения, неизбежно приводит к отеку головного мозга, состоянию комы и летальному исходу.

Среди причин повышенной выработки АДГ можно выделить:

  • опухоли участков головного мозга;
  • бронхолегочная патология;
  • опухоль легких;
  • муковисцидоз;
  • в качестве реакции на индивидуальную непереносимость каких-либо лекарственных препаратов или их компонентов;
  • потеря значительного объема крови;
  • повышенная температура тела;
  • переносимые острые боли;
  • наркоз;
  • пониженное содержание в крови калия;
  • испытываемые эмоциональные потрясения;
  • опухоли в участках головного мозга;
  • различные заболевания нервной системы (травмы головного мозга, эпилепсия, опухоли, инсульт, энцефалит, психоз, тромбоз, энцефалит и пр.);
  • поражения органов дыхательной системы (астма, бронхит, пневмония, острая дыхательная недостаточность, туберкулез и пр.);
  • тяжелые инфекционные заболевания, такие как СПИД, ВИЧ, герпес, малярия;
  • заболевания крови и кроветворной системы.

Методы лечения нарушенного уровня АДГ

Единственным эффективным методом регулирования нарушенного уровня вазопрессина в крови является устранение причины патологии. В качестве дополнительного метода к основной терапии применяю контроль уровня потребляемой жидкости. Часто лечащим врачам назначается курс приема медикаментозных препаратов, которые блокируют воздействие АДГ на организм человека. К таким средствам относят лекарства, содержащие карбонат лития.

Если в результате проведенного обследования выявлена высокая концентрация гормона в почках и гипофизе, то в этом случае назначают препараты, блокирующие его накопление, а также нормализующие выработку в головном мозге.

Воздействие вазопрессина на организм до конца не изучено. Этой проблемой занимается множество ученых по всему миру. При нарушениях в выработке важно своевременно и правильно выявить первопричину и устранить ее. Только такой подход дает высокие шансы на благоприятный исход лечения нарушенного уровня вазопрессина.

- От нейросекреторных ядер гипоталамуса (супраоптического и паравентрикулярного) отходят аксоны к гипофизу

- По этим аксонам в заднюю долю гипофиза приходят упакованные в гранулы гормоны

- В задней доле гипофиза (нейрогипофиз) синтеза гормонов не происходит

- В передней части гипофиза (аденогипофиз) секретируется целый набор пептидных гормонов. Аденогипофиз находится под контролем особых химических факторов, которые секретируются нейронами гипоталамуса и выделяются из окончаний аксонов этих клеток в срединном возвышении в основании ножки гипофиза, откуда током крови достигают клеток аденогипофиза. Четыре из этих факторов называются либерины, а три- статинами

- Либерины стимулируют секрецию соответствующих гормонов клетками аденогипофиза

- Статины тормозыт секрецию соответствующих гормонов

- Либерины и статины- короткие пептиды, состоят из небольшого числа

аминокислотных остатков. Характерен мембранный тип рецепции.

Кортиколиберин вырабатывается в гипоталамусе, стимулирует выброс в кровь АКТГ

Тиреолиберин гипоталамуса (короткий пептид) состоит из 3 аминокислотных остатков регулиерует синтез и выброс тиреотропного гормона, способен непосредственно влиять на клетки мозга, активируя эмоциональное поведение и поддерживая бодрствование, учащая дыхание, подавляя аппетит, смягчая течение депрессий

Люлиберин- гипоталамический либерин, контролирующий регуляцию гонадотропинов (фолликулостимулирующий и лютеинизирующий гормоны) состоит из 10 аминокислотных остатков; также способен действовать на клетки мозга, активируя половое поведение, повышая эмоциональность и улучшая обучение и память.

Снижение люлиберина обнаруживается при нервной анорексии

Соматолиберин стимулирует образование и выброс соматотропина

Соматостатин тормозит эти процессы

Так же стоит отметить что в островках Ларгенганса(поджелудочная железа), в дельта(15%), вырабатывается соматостатин.

ПРОЛАКТО-СТАТИН(Пролактин) из дофамина

Меланостатин тормозит выброс меланоцитстимулирующего гормона. Помимо прямого влиянии на гипофиз, активирует эмоциональную и двигательную активность, воздействуя прямым образом на функции мозга. Обладает антидепрессивным эффектом и применяется при Паркинсонизме

- Из нервных окончаний клеток гипоталамуса в сосуды задней доли гипофиза поступают 2 пептидных гормона, каждый из которых состоит из 9 аминокислотных остатков: антидиуритический гормон (АДГ= вазопрессин) и окситоцин

- Орган-мишень для вазопрессина- почки

- Вазопрессин вырабатывается в нейронах супраоптического ядра гипоталамуса, по аксонам поступает в заднюю долю гипофиза, а оттуда с током крови достигает собирательных трубочек и выводных протоков почек

- Под действием вазопрессина повышается обратное всасывание воды из мочи, что препятствует большим потерям жидкости

- В повышенных концентрациях вазопрессин действует на мышцы стенок артерий: они сокращаются, сосуды сужаются и давление крови повышается

- Вазопрессин- «сужающий сосуды»

- Выброс вазопрессина в кровь усиливается при больших потерях крови, когда давление падает и его нужно поднять

- Вазопрессин также воздействует на мозг, является природным стимулятором обучения и памяти

- В малых дозах способен ускорять обучение, замедлять забывание, восстанавливать память после тяжелых травм

- При уменьшении доз вазопрессина (из-за черепно-мозговых травм, опухолей мозга и менингитов) развивается НЕСАХАРНЫЙ диабет

- Симптомы болезни:

1) резкое увеличение объема мочи (до 20 литров в сутки)

При этом избытка сахара в мочи как при сахарном диабете нет. Связано это с тем, что без вазоперссина невозможно обеспечить обратное поглощение воды из мочи в кровь

Сейчас вазопрессин научились получать синтетически и лечат им несахарный диабет

В тяжелых случаях орган-мишень не способен реагировать даже на большие концентрации вазопрессина, это происходит из-за того, что рецепторы вазопрессина, расположенные в собирательных трубочках и выводных протоках, теряют чувствительность к гормону.

Окситоцин (ОТ) в большинстве случаев вырабатывается в нейронах паравентрикулярного ядра гипоталамуса, транспортируется по аксонам в нейрогипофиз и оттуда поступает в кровь

Ткани-мишени ОТ: гладкие мышцы матки и мышечные клетки, окружающие протоки молочных желез и семенников

К концу беременности (после 280 дня) секреция окситоцина повышается, что приводит к сокращению гладкой мускулатуры матки, плод продвигается к шейке матки и к влагалищу, что приводит к родам. После родов секреция окситоцина тормозится

При недостаточной секреции окситоцина роды невозможны: приходится прибегать к искусственной стимуляции, вводя роженице синтетический окситоцин

К гормонам задней доли гипофиза вазопрессин и окситоцин относят условно, поскольку синтезируются они в особых нейронах гипоталамуса, откуда перено­сятся разными нейронами в заднюю долю гипофиза и поступают непосредственно в кровь.

Эти гормоны синтезируются рибосомальным путем, причем одновременно в гипоталамусе синтезируются три белка: нейрофизин I, II, III, функция которых заключается в нековалентном связывании окситоцина и вазопрессина и транспорте этих гормонов в нейросекреторные гранулы гипоталамуса; в виде комплексов нейрофи­зин - гормон они далее мигрируют вдоль аксона и достигают задней доли гипофиза, где после диссоциации комплекса свободный гормон секретируется в кровь. Нейрофизины также выделены в чистом виде и выяснена первичная структура двух из них (92 и 97 аминокислотных остатков соответственно); это богатые цистеином белки, содержащие по 7 дисульфидных связей.

Химическое строение обоих гормонов было расшифровано классическими работами В. дю Виньо и соавт., впервые выделивших эти гормоны из задней доли гипофиза и осуществивших их химический синтез. Оба гормона представляют собой нонапеп-тиды следующего строения:

Вазопрессин отличается от окситоцина двумя аминокислотами: он содержит в положении 3 от N-конца фенилаланин вместо изолейцина и в положении 8 аргинин вместо лейцина. Указанная последовательность девяти аминокислот характерна для вазо-прессина человека, обезьяны, лошади, крупного рогатого скота, овцы и собаки; в молекуле вазопрессина из гипофиза свиньи вместо аргинина в положении 8 содержится лизин, откуда и название «лизин-вазопрессин». У всех позвоночных, за исключением млекопитающих, идентифицирован, кроме того, вазотоцин; этот гормон, состоящий из кольца с S -S мостиком окситоцина и боковой цепью вазопрессина, был синтезирован химически В. дю Виньо задолго до выделения природного гормона. Высказывается предположение, что эволюционно все нейрогипофизарные гормоны произошли от одного общего предшественника, а именно аргинин-вазотоцина, из которого путем одиночных мутаций триплетов генов образовались модифицированные гормоны.

Основной биологический эффект окситоцина у млекопитающих связан со стимуляцией сокращения гладкой мускулатуры матки при родах и сокращения мышечных волокон, расположенных вокруг альвеол молочных желез, вызывающего секрецию молока. Вазопрессин стимулирует сокращение гладкой мускулатуры сосудов, оказывая сильное вазопрессорное действие, однако основная роль его сводится к регуляции водного обмена. Вазопрессин оказывает в небольших концентрациях (0,2 нг на 1 кг массы тела) мощное антидиуретическое действие - стимулирует обратный ток воды через мембраны почечных канальцев. В норме он контролирует осмотическое давление плазмы крови и водный баланс организма человека. При патологии, в частности атрофии задней доли гипофиза, развивается несахарный диабет - заболевание, характеризующееся выделением чрезвычайно больших количеств жидкости с мочой. При этом нарушен обратный процесс всасывания воды в канальцах почек.

Относительно механизма действия нейрогипофизарных гормонов известно, что гормональные эффекты, в частности вазопрессина, реализуются через аденилат-циклазную систему. Однако конкретный механизм действия вазопрессина на транспорт воды в почках пока остается неясным.

Меланоцитстимулирующие гормоны (МСГ, меланотропины)

Меланотропины синтезируются и секретируются в кровь промежуточной долей гипофиза. Физиологическая роль меланотропинов заключается в стимулировании мела-ниногенеза у млекопитающих и увеличении количества пигментных клеток (меланоцитов) в кожных покровах земноводных. Возможно также влияние МСГ на окраску меха и секреторную функцию сальных желез у животных.

Адренокортикотропный гормон

Еще в 1926 г. было установлено, что гипофиз оказывает стимулирующее влияние на надпочечники, повышая секрецию гормонов коркового вещества. Накоп­ленные к настоящему времени данные свидетельствуют, что этим свойством наделен АКТГ, вырабатываемый базофильными клетками аденогипофиза. АКТГ, помимо основного действия, - стимуляции синтеза и секреции гормонов коры надпочечников - обладает жиромобилизующей и меланоцитстимулирующей активностью.

Глюкокортикоиды оказывают разностороннее влияние на обмен веществ в разных тканях. В мышечной, лимфатической, соединительной и жировой тканях глюкокор­тикоиды проявляют катаболическое действие и вызывают снижение проницаемости клеточных мембран и соответственно торможение поглощения глюкозы и аминокислот; в то же время в печени они оказывают противоположное действие. Конечным ито­гом действия глюкокортикоидов является развитие гипергликемии, обусловленной главным образом глюконеогенезом. Механизм развития гипергликемии после введения глюкокортикоидов включает, кроме того, снижение синтеза гликогена в мыш­цах, торможение окисления глюкозы в тканях и усиление распада жиров (соответственно сохранение запасов глюкозы, так как в качестве источника энергии используются свободные жирные кислоты).

В ткани печени доказано индуцирующее действие кортизона и гидрокортизона на синтез некоторых белков-ферментов: триптофанпирролазы, тирозинтрансаминазы, серии- и треониндегидратаз и другие, свидетельствующее, что гормоны действуют на первую стадию передачи генетической информации - стадию транскрипции, способ­ствуя синтезу мРНК.

Минералокортикоиды (дезоксикортикостерон и альдостерон) регулируют главным образом обмен натрия, калия, хлора и воды; они способствуют удержанию ионов натрия и хлора в организме и выведению с мочой ионов калия. По-видимому, происходит обратное всасывание ионов натрия и хлора в канальцах почек в обмен на выведение других продуктов обмена, в частности мочевины. Альдостерон получил свое название на основании наличия в его молекуле альдегидной группы у 13-го углеродного атома вместо метильной группы у всех остальных кортикостероидов. Альдостерон является наиболее активным минералокортикоидом среди других кор­тикостероидов, в частности он в 50-100 раз активнее дезоксикортикостерона по влиянию на минеральный обмен.

Относительно судьбы гормонов коркового вещества надпочечников известно, что период полураспада кортикостероидов составляет всего 70 - 90 мин. Кортикостероиды подвергаются или восстановлению за счет разрыва двойных связей (присоеди­нения атомов водорода) или окислению, сопровождающемуся отщеплением боковой цепи у 17-го углеродного атома, теряя в обоих случаях биологическую активность.

Образовавшиеся продукты окисления гормонов коркового вещества надпочечников получили название 17-кетостероидов, которые выводятся с мочой в качестве конечных продуктов обмена. Определение 17-кетостероидов в моче имеет большое клиническое значение

Половые гормоны

Женские половые гормоны

Основным местом синтеза женских половых гормонов - эстрогенов (от греч. oistros - страстное влечение) являются яичники и желтое тело; доказано также образование этих гормонов в надпочечниках, семенниках и плаценте. Впервые эстро­гены обнаружены в 1927 г. в моче беременных женщин, а в 1929 г. А. Бутенандт и одновременно Э. Дойзи выделили из этого источника эстрон, который оказался первым стероидным гормоном, полученным в кристаллическом виде. В настоящее время открыты две группы женских половых гормонов, отличающихся по своей химической структуре и биологической функции: эстрогены (главный представитель - эстрадиол) и прогестины (главный представитель - прогестерон). Приводим химиче­ское строение основных женских половых гормонов:

Наиболее активный эстроген - эстрадиол, преимущественно синтезируемый в фол­ликулах; два остальных эстрогена являются производными эстрадиола и синтези­руются также в надпочечниках и плаценте. Все эстрогены состоят из 18 атомов углерода. Секреция эстрогенов и прогестерона яичником носит циклический характер, зависящий от фазы полового цикла; так, в первой фазе цикла в основном синте­зируются эстрогены, а во второй - преимущественно прогестерон. Предшественником этих гормонов в организме является, как и в случае кортикостероидов, холестерин, который подвергается последовательным реакциям гидроксилирования, окисле­ния и отщепления боковой цепи с образованием прегненолона. Завершается синтез эстрогенов уникальной реакцией ароматизации первого кольца, катализируемой ферментным комплексом микросом - ароматазой; предполагается, что процесс аромати­зации включает минимум три оксидазные реакции и все они зависят от цитохрома Р-450.

Ведущую роль в регуляции синтеза эстрогенов и прогестерона играют гонадотропные гормоны гипофиза (фоллитропин и лютропин), которые опосредованно, через рецепторы клеток яичника и систему аденилатциклаза - цАМФ и, возможно, путем синтеза специфического белка контролируют синтез гормонов. Основная био­логическая роль эстрогенов и прогестерона, синтез которых начинается после на­ступления половой зрелости, заключается в обеспечении репродуктивной функции организма женщины. В этот период они вызывают развитие вторичных половых признаков и создают оптимальные условия, обеспечивающие возможность оплодотво­рения яйцеклетки после овуляции. Прогестерон выполняет в организме ряд специфи­ческих функций: подготавливает слизистую оболочку матки к успешной имплантации яйцеклетки в случае ее оплодотворения; при наступлении беременности основная роль сводится к сохранению беременности; прогестерон оказывает тормозящее влияние на овуляцию и стимулирует развитие ткани молочной железы. Эстрогены оказывают анаболическое действие на организм, стимулируя синтез белка.

Распад эстрогенов, по-видимому, происходит в печени

Мужские половые гормоны

Гормон, выделенный из ткани семенников, оказался активнее андростерона почти в 10 раз и был идентифицирован в виде тестостерона (от лат. testis - семенник). Строение всех трех андрогенов может быть представлено в сле­дующем виде.

Андрогены в отличие от эстрогенов в противоположность ароматическому характеру кольца А эстрогенов тестостерон, кроме того, содержит кетонную группу (как и кортикостероиды).

Биосинтез андрогенов осуществляется главным образом в семенниках и частично в яичниках и надпочечниках. Основными источниками и предшественниками андро­генов, в частности тестостерона, являются уксусная кислота и холестерин. Существуют экспериментальные доказательства, что путь биосинтеза тестостерона со стадии холе­стерина включает несколько последовательных ферментативных реакций через прег-ненолон и 17-я-оксипрегненолон. Регуляция биосинтеза андрогенов в семенниках осуществляется гонадотропными гормонами гипофиза (Л Г и ФСГ), хотя механизм их первичного эффекта до сих пор не раскрыт; в свою очередь андрогены регу­лируют секрецию гонадотропинов по механизму отрицательной обратной связи, блокируя соответствующие центры в гипоталамусе.

Биологическая роль андрогенов в мужском организме в основном связана с дифференцировкой и функционированием репродуктивной системы, причем в отли­чие от эстрогенов андрогенные гормоны уже в эмбриональном периоде оказывают существенное влияние на дифференцировку мужских половых желез, а также на дифференцировку других тканей, определяя характер секреции гонадотропных гормонов во взрослом состоянии. Во взрослом организме андрогены регулируют развитие мужских вторичных половых признаков, сперматогенез в семенниках и т. д. Следует отметить, что андрогены обладают значительным анаболическим действием, выра­жающимся в стимуляции синтеза белка во всех тканях, но в большей степени в мышцах; для реализации анаболического эффекта андрогенов необходимым усло­вием является присутствие соматотропина. Имеются данные, свидетельствующие об участии андрогенов, кроме того, в регуляции биосинтеза макромолекул в женских репродуктивных органах, в частности синтеза мРНК в матке. Распад мужских половых гормонов в организме осуществляется в основном в печени.